Step |
Hyp |
Ref |
Expression |
1 |
|
n2dvds1 |
⊢ ¬ 2 ∥ 1 |
2 |
|
2z |
⊢ 2 ∈ ℤ |
3 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
4 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
5 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
6 |
3 4 5
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
7 |
6
|
simpld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
8 |
|
gcdnncl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
9 |
8
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
10 |
8
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
11 |
3
|
adantr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
12 |
|
dvdsval2 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
13 |
9 10 11 12
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
14 |
7 13
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
15 |
6
|
simprd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
16 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
17 |
|
dvdsval2 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
18 |
9 10 16 17
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
19 |
15 18
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
20 |
|
dvdsgcdb |
⊢ ( ( 2 ∈ ℤ ∧ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) → ( ( 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 2 ∥ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
21 |
2 14 19 20
|
mp3an2i |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 2 ∥ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
22 |
|
gcddiv |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) ∧ ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
23 |
11 16 8 6 22
|
syl31anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
24 |
8
|
nncnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
25 |
24 10
|
dividd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
26 |
23 25
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
27 |
26
|
breq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 2 ∥ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 2 ∥ 1 ) ) |
28 |
27
|
biimpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 2 ∥ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) → 2 ∥ 1 ) ) |
29 |
21 28
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) → 2 ∥ 1 ) ) |
30 |
29
|
expdimp |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) → 2 ∥ 1 ) ) |
31 |
1 30
|
mtoi |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
32 |
31
|
ex |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) → ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
33 |
|
imor |
⊢ ( ( 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) → ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ ( ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∨ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
34 |
32 33
|
sylib |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∨ ¬ 2 ∥ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |