Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | divge0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0div | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 ≤ 𝐴 ↔ 0 ≤ ( 𝐴 / 𝐵 ) ) ) | |
2 | 1 | biimpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 ≤ 𝐴 → 0 ≤ ( 𝐴 / 𝐵 ) ) ) |
3 | 2 | 3exp | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 0 < 𝐵 → ( 0 ≤ 𝐴 → 0 ≤ ( 𝐴 / 𝐵 ) ) ) ) ) |
4 | 3 | com34 | ⊢ ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 0 ≤ 𝐴 → ( 0 < 𝐵 → 0 ≤ ( 𝐴 / 𝐵 ) ) ) ) ) |
5 | 4 | com23 | ⊢ ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 → ( 𝐵 ∈ ℝ → ( 0 < 𝐵 → 0 ≤ ( 𝐴 / 𝐵 ) ) ) ) ) |
6 | 5 | imp43 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |