Metamath Proof Explorer


Theorem divge0

Description: The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999)

Ref Expression
Assertion divge0 ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ge0div ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 ≤ 𝐴 ↔ 0 ≤ ( 𝐴 / 𝐵 ) ) )
2 1 biimpd ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 0 ≤ 𝐴 → 0 ≤ ( 𝐴 / 𝐵 ) ) )
3 2 3exp ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 0 < 𝐵 → ( 0 ≤ 𝐴 → 0 ≤ ( 𝐴 / 𝐵 ) ) ) ) )
4 3 com34 ( 𝐴 ∈ ℝ → ( 𝐵 ∈ ℝ → ( 0 ≤ 𝐴 → ( 0 < 𝐵 → 0 ≤ ( 𝐴 / 𝐵 ) ) ) ) )
5 4 com23 ( 𝐴 ∈ ℝ → ( 0 ≤ 𝐴 → ( 𝐵 ∈ ℝ → ( 0 < 𝐵 → 0 ≤ ( 𝐴 / 𝐵 ) ) ) ) )
6 5 imp43 ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) )