| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rpgecl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  𝐵  ∈  ℝ+ ) | 
						
							| 2 |  | rpcn | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | rpne0 | ⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ≠  0 ) | 
						
							| 4 | 2 3 | dividd | ⊢ ( 𝐵  ∈  ℝ+  →  ( 𝐵  /  𝐵 )  =  1 ) | 
						
							| 5 | 4 | eqcomd | ⊢ ( 𝐵  ∈  ℝ+  →  1  =  ( 𝐵  /  𝐵 ) ) | 
						
							| 6 | 1 5 | syl | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  1  =  ( 𝐵  /  𝐵 ) ) | 
						
							| 7 |  | simp3 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 8 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  𝐴  ∈  ℝ+ ) | 
						
							| 9 | 8 1 1 | lediv2d | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( 𝐴  ≤  𝐵  ↔  ( 𝐵  /  𝐵 )  ≤  ( 𝐵  /  𝐴 ) ) ) | 
						
							| 10 | 7 9 | mpbid | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  ( 𝐵  /  𝐵 )  ≤  ( 𝐵  /  𝐴 ) ) | 
						
							| 11 | 6 10 | eqbrtrd | ⊢ ( ( 𝐴  ∈  ℝ+  ∧  𝐵  ∈  ℝ  ∧  𝐴  ≤  𝐵 )  →  1  ≤  ( 𝐵  /  𝐴 ) ) |