Step |
Hyp |
Ref |
Expression |
1 |
|
rpgecl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ+ ) |
2 |
|
rpcn |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) |
3 |
|
rpne0 |
⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) |
4 |
2 3
|
dividd |
⊢ ( 𝐵 ∈ ℝ+ → ( 𝐵 / 𝐵 ) = 1 ) |
5 |
4
|
eqcomd |
⊢ ( 𝐵 ∈ ℝ+ → 1 = ( 𝐵 / 𝐵 ) ) |
6 |
1 5
|
syl |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 1 = ( 𝐵 / 𝐵 ) ) |
7 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) |
8 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ+ ) |
9 |
8 1 1
|
lediv2d |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 ≤ 𝐵 ↔ ( 𝐵 / 𝐵 ) ≤ ( 𝐵 / 𝐴 ) ) ) |
10 |
7 9
|
mpbid |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 / 𝐵 ) ≤ ( 𝐵 / 𝐴 ) ) |
11 |
6 10
|
eqbrtrd |
⊢ ( ( 𝐴 ∈ ℝ+ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 1 ≤ ( 𝐵 / 𝐴 ) ) |