Metamath Proof Explorer


Theorem divge1

Description: The ratio of a number over a smaller positive number is larger than 1. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Assertion divge1 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 1 ≤ ( 𝐵 / 𝐴 ) )

Proof

Step Hyp Ref Expression
1 rpgecl ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 𝐵 ∈ ℝ+ )
2 rpcn ( 𝐵 ∈ ℝ+𝐵 ∈ ℂ )
3 rpne0 ( 𝐵 ∈ ℝ+𝐵 ≠ 0 )
4 2 3 dividd ( 𝐵 ∈ ℝ+ → ( 𝐵 / 𝐵 ) = 1 )
5 4 eqcomd ( 𝐵 ∈ ℝ+ → 1 = ( 𝐵 / 𝐵 ) )
6 1 5 syl ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 1 = ( 𝐵 / 𝐵 ) )
7 simp3 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 𝐴𝐵 )
8 simp1 ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 𝐴 ∈ ℝ+ )
9 8 1 1 lediv2d ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( 𝐴𝐵 ↔ ( 𝐵 / 𝐵 ) ≤ ( 𝐵 / 𝐴 ) ) )
10 7 9 mpbid ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → ( 𝐵 / 𝐵 ) ≤ ( 𝐵 / 𝐴 ) )
11 6 10 eqbrtrd ( ( 𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐴𝐵 ) → 1 ≤ ( 𝐵 / 𝐴 ) )