Metamath Proof Explorer


Theorem divgt0i

Description: The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999)

Ref Expression
Hypotheses ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
Assertion divgt0i ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → 0 < ( 𝐴 / 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ltplus1.1 𝐴 ∈ ℝ
2 prodgt0.2 𝐵 ∈ ℝ
3 divgt0 ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 / 𝐵 ) )
4 2 3 mpanr1 ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ 0 < 𝐵 ) → 0 < ( 𝐴 / 𝐵 ) )
5 1 4 mpanl1 ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → 0 < ( 𝐴 / 𝐵 ) )