Metamath Proof Explorer
Description: The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999)
|
|
Ref |
Expression |
|
Hypotheses |
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
|
|
prodgt0.2 |
⊢ 𝐵 ∈ ℝ |
|
|
divgt0i2.3 |
⊢ 0 < 𝐵 |
|
Assertion |
divgt0i2i |
⊢ ( 0 < 𝐴 → 0 < ( 𝐴 / 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ltplus1.1 |
⊢ 𝐴 ∈ ℝ |
2 |
|
prodgt0.2 |
⊢ 𝐵 ∈ ℝ |
3 |
|
divgt0i2.3 |
⊢ 0 < 𝐵 |
4 |
1 2
|
divgt0i |
⊢ ( ( 0 < 𝐴 ∧ 0 < 𝐵 ) → 0 < ( 𝐴 / 𝐵 ) ) |
5 |
3 4
|
mpan2 |
⊢ ( 0 < 𝐴 → 0 < ( 𝐴 / 𝐵 ) ) |