Description: Obsolete version of divid as of 9-Jul-2025. (Contributed by NM, 1-Aug-2004) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | dividOLD | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = 1 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divrec | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = ( 𝐴 · ( 1 / 𝐴 ) ) ) | |
2 | 1 | 3anidm12 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = ( 𝐴 · ( 1 / 𝐴 ) ) ) |
3 | recid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 ) | |
4 | 2 3 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = 1 ) |