Metamath Proof Explorer


Theorem dividOLD

Description: Obsolete version of divid as of 9-Jul-2025. (Contributed by NM, 1-Aug-2004) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dividOLD ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = 1 )

Proof

Step Hyp Ref Expression
1 divrec ( ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = ( 𝐴 · ( 1 / 𝐴 ) ) )
2 1 3anidm12 ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = ( 𝐴 · ( 1 / 𝐴 ) ) )
3 recid ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 · ( 1 / 𝐴 ) ) = 1 )
4 2 3 eqtrd ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = 1 )