Step |
Hyp |
Ref |
Expression |
1 |
|
df-br |
⊢ ( 𝑀 ∥ 𝑁 ↔ 〈 𝑀 , 𝑁 〉 ∈ ∥ ) |
2 |
|
df-dvds |
⊢ ∥ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑥 ) = 𝑦 ) } |
3 |
2
|
eleq2i |
⊢ ( 〈 𝑀 , 𝑁 〉 ∈ ∥ ↔ 〈 𝑀 , 𝑁 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑥 ) = 𝑦 ) } ) |
4 |
1 3
|
bitri |
⊢ ( 𝑀 ∥ 𝑁 ↔ 〈 𝑀 , 𝑁 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑥 ) = 𝑦 ) } ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑀 → ( 𝑛 · 𝑥 ) = ( 𝑛 · 𝑀 ) ) |
6 |
5
|
eqeq1d |
⊢ ( 𝑥 = 𝑀 → ( ( 𝑛 · 𝑥 ) = 𝑦 ↔ ( 𝑛 · 𝑀 ) = 𝑦 ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑥 = 𝑀 → ( ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑥 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑦 ) ) |
8 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑁 → ( ( 𝑛 · 𝑀 ) = 𝑦 ↔ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
9 |
8
|
rexbidv |
⊢ ( 𝑦 = 𝑁 → ( ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
10 |
7 9
|
opelopab2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 〈 𝑀 , 𝑁 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) ∧ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑥 ) = 𝑦 ) } ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |
11 |
4 10
|
syl5bb |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑛 ∈ ℤ ( 𝑛 · 𝑀 ) = 𝑁 ) ) |