Metamath Proof Explorer


Theorem dividi

Description: A number divided by itself is one. (Contributed by NM, 9-Feb-1995)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
reccl.2 𝐴 ≠ 0
Assertion dividi ( 𝐴 / 𝐴 ) = 1

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 reccl.2 𝐴 ≠ 0
3 divid ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐴 ) = 1 )
4 1 2 3 mp2an ( 𝐴 / 𝐴 ) = 1