| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐴  ∈  ℝ ) | 
						
							| 2 |  | rpregt0 | ⊢ ( 𝐵  ∈  ℝ+  →  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) ) | 
						
							| 4 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 5 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 6 | 4 5 | pm3.2i | ⊢ ( 1  ∈  ℝ  ∧  0  <  1 ) | 
						
							| 7 | 6 | a1i | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 1  ∈  ℝ  ∧  0  <  1 ) ) | 
						
							| 8 |  | lediv23 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 )  ∧  ( 1  ∈  ℝ  ∧  0  <  1 ) )  →  ( ( 𝐴  /  𝐵 )  ≤  1  ↔  ( 𝐴  /  1 )  ≤  𝐵 ) ) | 
						
							| 9 | 1 3 7 8 | syl3anc | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  ≤  1  ↔  ( 𝐴  /  1 )  ≤  𝐵 ) ) | 
						
							| 10 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 11 | 10 | div1d | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  /  1 )  =  𝐴 ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  /  1 )  =  𝐴 ) | 
						
							| 13 | 12 | breq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  1 )  ≤  𝐵  ↔  𝐴  ≤  𝐵 ) ) | 
						
							| 14 | 9 13 | bitrd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  ≤  1  ↔  𝐴  ≤  𝐵 ) ) |