| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elioore | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 2 |  | eliooord | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 3 | 2 | simpld | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  1  <  𝑥 ) | 
						
							| 4 | 1 3 | rplogcld | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( log ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 5 | 4 | rprecred | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 1  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 6 | 5 | recnd | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 1  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 7 | 6 | rgen | ⊢ ∀ 𝑥  ∈  ( 1 (,) +∞ ) ( 1  /  ( log ‘ 𝑥 ) )  ∈  ℂ | 
						
							| 8 | 7 | a1i | ⊢ ( ⊤  →  ∀ 𝑥  ∈  ( 1 (,) +∞ ) ( 1  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 9 |  | ioossre | ⊢ ( 1 (,) +∞ )  ⊆  ℝ | 
						
							| 10 | 9 | a1i | ⊢ ( ⊤  →  ( 1 (,) +∞ )  ⊆  ℝ ) | 
						
							| 11 | 8 10 | rlim0lt | ⊢ ( ⊤  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0  ↔  ∀ 𝑦  ∈  ℝ+ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  ( 1 (,) +∞ ) ( 𝑐  <  𝑥  →  ( abs ‘ ( 1  /  ( log ‘ 𝑥 ) ) )  <  𝑦 ) ) ) | 
						
							| 12 | 11 | mptru | ⊢ ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0  ↔  ∀ 𝑦  ∈  ℝ+ ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  ( 1 (,) +∞ ) ( 𝑐  <  𝑥  →  ( abs ‘ ( 1  /  ( log ‘ 𝑥 ) ) )  <  𝑦 ) ) | 
						
							| 13 |  | id | ⊢ ( 𝑦  ∈  ℝ+  →  𝑦  ∈  ℝ+ ) | 
						
							| 14 | 13 | rprecred | ⊢ ( 𝑦  ∈  ℝ+  →  ( 1  /  𝑦 )  ∈  ℝ ) | 
						
							| 15 | 14 | reefcld | ⊢ ( 𝑦  ∈  ℝ+  →  ( exp ‘ ( 1  /  𝑦 ) )  ∈  ℝ ) | 
						
							| 16 | 5 | ad2antlr | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( 1  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 17 | 1 | ad2antlr | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  𝑥  ∈  ℝ ) | 
						
							| 18 | 3 | ad2antlr | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  1  <  𝑥 ) | 
						
							| 19 | 17 18 | rplogcld | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( log ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 20 | 19 | rpreccld | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( 1  /  ( log ‘ 𝑥 ) )  ∈  ℝ+ ) | 
						
							| 21 | 20 | rpge0d | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  0  ≤  ( 1  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 22 | 16 21 | absidd | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( abs ‘ ( 1  /  ( log ‘ 𝑥 ) ) )  =  ( 1  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 23 |  | simpll | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  𝑦  ∈  ℝ+ ) | 
						
							| 24 | 4 | ad2antlr | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( log ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 25 |  | simpr | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 ) | 
						
							| 26 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 27 | 26 | a1i | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  1  ∈  ℝ+ ) | 
						
							| 28 | 27 | rpred | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  1  ∈  ℝ ) | 
						
							| 29 | 28 17 18 | ltled | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  1  ≤  𝑥 ) | 
						
							| 30 | 17 27 29 | rpgecld | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  𝑥  ∈  ℝ+ ) | 
						
							| 31 | 30 | reeflogd | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( exp ‘ ( log ‘ 𝑥 ) )  =  𝑥 ) | 
						
							| 32 | 25 31 | breqtrrd | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( exp ‘ ( 1  /  𝑦 ) )  <  ( exp ‘ ( log ‘ 𝑥 ) ) ) | 
						
							| 33 | 23 | rprecred | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( 1  /  𝑦 )  ∈  ℝ ) | 
						
							| 34 | 24 | rpred | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 35 |  | eflt | ⊢ ( ( ( 1  /  𝑦 )  ∈  ℝ  ∧  ( log ‘ 𝑥 )  ∈  ℝ )  →  ( ( 1  /  𝑦 )  <  ( log ‘ 𝑥 )  ↔  ( exp ‘ ( 1  /  𝑦 ) )  <  ( exp ‘ ( log ‘ 𝑥 ) ) ) ) | 
						
							| 36 | 33 34 35 | syl2anc | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( ( 1  /  𝑦 )  <  ( log ‘ 𝑥 )  ↔  ( exp ‘ ( 1  /  𝑦 ) )  <  ( exp ‘ ( log ‘ 𝑥 ) ) ) ) | 
						
							| 37 | 32 36 | mpbird | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( 1  /  𝑦 )  <  ( log ‘ 𝑥 ) ) | 
						
							| 38 | 23 24 37 | ltrec1d | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( 1  /  ( log ‘ 𝑥 ) )  <  𝑦 ) | 
						
							| 39 | 22 38 | eqbrtrd | ⊢ ( ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 )  →  ( abs ‘ ( 1  /  ( log ‘ 𝑥 ) ) )  <  𝑦 ) | 
						
							| 40 | 39 | ex | ⊢ ( ( 𝑦  ∈  ℝ+  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥  →  ( abs ‘ ( 1  /  ( log ‘ 𝑥 ) ) )  <  𝑦 ) ) | 
						
							| 41 | 40 | ralrimiva | ⊢ ( 𝑦  ∈  ℝ+  →  ∀ 𝑥  ∈  ( 1 (,) +∞ ) ( ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥  →  ( abs ‘ ( 1  /  ( log ‘ 𝑥 ) ) )  <  𝑦 ) ) | 
						
							| 42 |  | breq1 | ⊢ ( 𝑐  =  ( exp ‘ ( 1  /  𝑦 ) )  →  ( 𝑐  <  𝑥  ↔  ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥 ) ) | 
						
							| 43 | 42 | rspceaimv | ⊢ ( ( ( exp ‘ ( 1  /  𝑦 ) )  ∈  ℝ  ∧  ∀ 𝑥  ∈  ( 1 (,) +∞ ) ( ( exp ‘ ( 1  /  𝑦 ) )  <  𝑥  →  ( abs ‘ ( 1  /  ( log ‘ 𝑥 ) ) )  <  𝑦 ) )  →  ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  ( 1 (,) +∞ ) ( 𝑐  <  𝑥  →  ( abs ‘ ( 1  /  ( log ‘ 𝑥 ) ) )  <  𝑦 ) ) | 
						
							| 44 | 15 41 43 | syl2anc | ⊢ ( 𝑦  ∈  ℝ+  →  ∃ 𝑐  ∈  ℝ ∀ 𝑥  ∈  ( 1 (,) +∞ ) ( 𝑐  <  𝑥  →  ( abs ‘ ( 1  /  ( log ‘ 𝑥 ) ) )  <  𝑦 ) ) | 
						
							| 45 | 12 44 | mprgbir | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0 |