Metamath Proof Explorer


Theorem divlt0gt0d

Description: The ratio of a negative numerator and a positive denominator is negative. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses divlt0gt0d.1 ( 𝜑𝐴 ∈ ℝ )
divlt0gt0d.2 ( 𝜑𝐵 ∈ ℝ+ )
divlt0gt0d.3 ( 𝜑𝐴 < 0 )
Assertion divlt0gt0d ( 𝜑 → ( 𝐴 / 𝐵 ) < 0 )

Proof

Step Hyp Ref Expression
1 divlt0gt0d.1 ( 𝜑𝐴 ∈ ℝ )
2 divlt0gt0d.2 ( 𝜑𝐵 ∈ ℝ+ )
3 divlt0gt0d.3 ( 𝜑𝐴 < 0 )
4 0red ( 𝜑 → 0 ∈ ℝ )
5 1 4 ltnled ( 𝜑 → ( 𝐴 < 0 ↔ ¬ 0 ≤ 𝐴 ) )
6 3 5 mpbid ( 𝜑 → ¬ 0 ≤ 𝐴 )
7 1 2 ge0divd ( 𝜑 → ( 0 ≤ 𝐴 ↔ 0 ≤ ( 𝐴 / 𝐵 ) ) )
8 6 7 mtbid ( 𝜑 → ¬ 0 ≤ ( 𝐴 / 𝐵 ) )
9 1 2 rerpdivcld ( 𝜑 → ( 𝐴 / 𝐵 ) ∈ ℝ )
10 9 4 ltnled ( 𝜑 → ( ( 𝐴 / 𝐵 ) < 0 ↔ ¬ 0 ≤ ( 𝐴 / 𝐵 ) ) )
11 8 10 mpbird ( 𝜑 → ( 𝐴 / 𝐵 ) < 0 )