Description: Swap denominators of two ratios. (Contributed by Mario Carneiro, 27-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
divmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
divmuldivd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | ||
divmuldivd.5 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | ||
divmuldivd.6 | ⊢ ( 𝜑 → 𝐷 ≠ 0 ) | ||
Assertion | divmul13d | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐶 / 𝐵 ) · ( 𝐴 / 𝐷 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | divcld.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
3 | divmuld.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
4 | divmuldivd.4 | ⊢ ( 𝜑 → 𝐷 ∈ ℂ ) | |
5 | divmuldivd.5 | ⊢ ( 𝜑 → 𝐵 ≠ 0 ) | |
6 | divmuldivd.6 | ⊢ ( 𝜑 → 𝐷 ≠ 0 ) | |
7 | 2 5 | jca | ⊢ ( 𝜑 → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
8 | 4 6 | jca | ⊢ ( 𝜑 → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
9 | divmul13 | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) → ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐶 / 𝐵 ) · ( 𝐴 / 𝐷 ) ) ) | |
10 | 1 3 7 8 9 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐶 / 𝐵 ) · ( 𝐴 / 𝐷 ) ) ) |