Description: Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
divclz.2 | ⊢ 𝐵 ∈ ℂ | ||
divmulz.3 | ⊢ 𝐶 ∈ ℂ | ||
divmuldiv.4 | ⊢ 𝐷 ∈ ℂ | ||
divmuldiv.5 | ⊢ 𝐵 ≠ 0 | ||
divmuldiv.6 | ⊢ 𝐷 ≠ 0 | ||
Assertion | divmul13i | ⊢ ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐶 / 𝐵 ) · ( 𝐴 / 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divclz.1 | ⊢ 𝐴 ∈ ℂ | |
2 | divclz.2 | ⊢ 𝐵 ∈ ℂ | |
3 | divmulz.3 | ⊢ 𝐶 ∈ ℂ | |
4 | divmuldiv.4 | ⊢ 𝐷 ∈ ℂ | |
5 | divmuldiv.5 | ⊢ 𝐵 ≠ 0 | |
6 | divmuldiv.6 | ⊢ 𝐷 ≠ 0 | |
7 | 3 1 | mulcomi | ⊢ ( 𝐶 · 𝐴 ) = ( 𝐴 · 𝐶 ) |
8 | 7 | oveq1i | ⊢ ( ( 𝐶 · 𝐴 ) / ( 𝐵 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) / ( 𝐵 · 𝐷 ) ) |
9 | 3 2 1 4 5 6 | divmuldivi | ⊢ ( ( 𝐶 / 𝐵 ) · ( 𝐴 / 𝐷 ) ) = ( ( 𝐶 · 𝐴 ) / ( 𝐵 · 𝐷 ) ) |
10 | 1 2 3 4 5 6 | divmuldivi | ⊢ ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) / ( 𝐵 · 𝐷 ) ) |
11 | 8 9 10 | 3eqtr4ri | ⊢ ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐶 / 𝐵 ) · ( 𝐴 / 𝐷 ) ) |