Metamath Proof Explorer


Theorem divmul13i

Description: Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divmulz.3 𝐶 ∈ ℂ
divmuldiv.4 𝐷 ∈ ℂ
divmuldiv.5 𝐵 ≠ 0
divmuldiv.6 𝐷 ≠ 0
Assertion divmul13i ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐶 / 𝐵 ) · ( 𝐴 / 𝐷 ) )

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 divclz.2 𝐵 ∈ ℂ
3 divmulz.3 𝐶 ∈ ℂ
4 divmuldiv.4 𝐷 ∈ ℂ
5 divmuldiv.5 𝐵 ≠ 0
6 divmuldiv.6 𝐷 ≠ 0
7 3 1 mulcomi ( 𝐶 · 𝐴 ) = ( 𝐴 · 𝐶 )
8 7 oveq1i ( ( 𝐶 · 𝐴 ) / ( 𝐵 · 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) / ( 𝐵 · 𝐷 ) )
9 3 2 1 4 5 6 divmuldivi ( ( 𝐶 / 𝐵 ) · ( 𝐴 / 𝐷 ) ) = ( ( 𝐶 · 𝐴 ) / ( 𝐵 · 𝐷 ) )
10 1 2 3 4 5 6 divmuldivi ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) / ( 𝐵 · 𝐷 ) )
11 8 9 10 3eqtr4ri ( ( 𝐴 / 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐶 / 𝐵 ) · ( 𝐴 / 𝐷 ) )