| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
| 2 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
| 3 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 4 |
|
divass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐷 ) = ( 𝐴 · ( 𝐵 / 𝐷 ) ) ) |
| 5 |
1 2 3 4
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) / 𝐷 ) = ( 𝐴 · ( 𝐵 / 𝐷 ) ) ) |
| 6 |
5
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 · ( 𝐵 / 𝐷 ) ) = ( ( 𝐴 · 𝐵 ) / 𝐷 ) ) |
| 7 |
6
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · ( 𝐵 / 𝐷 ) ) · 𝐶 ) = ( ( ( 𝐴 · 𝐵 ) / 𝐷 ) · 𝐶 ) ) |
| 8 |
|
mulcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) ∈ ℂ ) |
| 11 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → 𝐶 ∈ ℂ ) |
| 12 |
|
div32 |
⊢ ( ( ( 𝐴 · 𝐵 ) ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ∧ 𝐶 ∈ ℂ ) → ( ( ( 𝐴 · 𝐵 ) / 𝐷 ) · 𝐶 ) = ( ( 𝐴 · 𝐵 ) · ( 𝐶 / 𝐷 ) ) ) |
| 13 |
10 3 11 12
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( ( 𝐴 · 𝐵 ) / 𝐷 ) · 𝐶 ) = ( ( 𝐴 · 𝐵 ) · ( 𝐶 / 𝐷 ) ) ) |
| 14 |
7 13
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · ( 𝐵 / 𝐷 ) ) · 𝐶 ) = ( ( 𝐴 · 𝐵 ) · ( 𝐶 / 𝐷 ) ) ) |