| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divmulass |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · ( 𝐵 / 𝐷 ) ) · 𝐶 ) = ( ( 𝐴 · 𝐵 ) · ( 𝐶 / 𝐷 ) ) ) |
| 2 |
|
mulcom |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 3 |
2
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 · 𝐵 ) = ( 𝐵 · 𝐴 ) ) |
| 5 |
4
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · 𝐵 ) · ( 𝐶 / 𝐷 ) ) = ( ( 𝐵 · 𝐴 ) · ( 𝐶 / 𝐷 ) ) ) |
| 6 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
| 7 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
| 8 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
| 9 |
8
|
anim1i |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) |
| 10 |
|
3anass |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ↔ ( 𝐶 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 12 |
|
divcl |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) → ( 𝐶 / 𝐷 ) ∈ ℂ ) |
| 13 |
11 12
|
syl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 / 𝐷 ) ∈ ℂ ) |
| 14 |
6 7 13
|
mulassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐵 · 𝐴 ) · ( 𝐶 / 𝐷 ) ) = ( 𝐵 · ( 𝐴 · ( 𝐶 / 𝐷 ) ) ) ) |
| 15 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → 𝐶 ∈ ℂ ) |
| 16 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 17 |
|
divass |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · 𝐶 ) / 𝐷 ) = ( 𝐴 · ( 𝐶 / 𝐷 ) ) ) |
| 18 |
7 15 16 17
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · 𝐶 ) / 𝐷 ) = ( 𝐴 · ( 𝐶 / 𝐷 ) ) ) |
| 19 |
18
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐴 · ( 𝐶 / 𝐷 ) ) = ( ( 𝐴 · 𝐶 ) / 𝐷 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 𝐵 · ( 𝐴 · ( 𝐶 / 𝐷 ) ) ) = ( 𝐵 · ( ( 𝐴 · 𝐶 ) / 𝐷 ) ) ) |
| 21 |
14 20
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐵 · 𝐴 ) · ( 𝐶 / 𝐷 ) ) = ( 𝐵 · ( ( 𝐴 · 𝐶 ) / 𝐷 ) ) ) |
| 22 |
1 5 21
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( ( 𝐴 · ( 𝐵 / 𝐷 ) ) · 𝐶 ) = ( 𝐵 · ( ( 𝐴 · 𝐶 ) / 𝐷 ) ) ) |