Step |
Hyp |
Ref |
Expression |
1 |
|
divmuldivsd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
divmuldivsd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
divmuldivsd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
divmuldivsd.4 |
⊢ ( 𝜑 → 𝐷 ∈ No ) |
5 |
|
divmuldivsd.5 |
⊢ ( 𝜑 → 𝐵 ≠ 0s ) |
6 |
|
divmuldivsd.6 |
⊢ ( 𝜑 → 𝐷 ≠ 0s ) |
7 |
1 2 5
|
divscld |
⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No ) |
8 |
3 4 6
|
divscld |
⊢ ( 𝜑 → ( 𝐶 /su 𝐷 ) ∈ No ) |
9 |
2 4 7 8
|
muls4d |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) ·s ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ) = ( ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) ·s ( 𝐷 ·s ( 𝐶 /su 𝐷 ) ) ) ) |
10 |
1 2 5
|
divscan2d |
⊢ ( 𝜑 → ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) = 𝐴 ) |
11 |
3 4 6
|
divscan2d |
⊢ ( 𝜑 → ( 𝐷 ·s ( 𝐶 /su 𝐷 ) ) = 𝐶 ) |
12 |
10 11
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) ·s ( 𝐷 ·s ( 𝐶 /su 𝐷 ) ) ) = ( 𝐴 ·s 𝐶 ) ) |
13 |
9 12
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) ·s ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ) = ( 𝐴 ·s 𝐶 ) ) |
14 |
1 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No ) |
15 |
7 8
|
mulscld |
⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ∈ No ) |
16 |
2 4
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐷 ) ∈ No ) |
17 |
2 4
|
mulsne0bd |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) ≠ 0s ↔ ( 𝐵 ≠ 0s ∧ 𝐷 ≠ 0s ) ) ) |
18 |
5 6 17
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐷 ) ≠ 0s ) |
19 |
14 15 16 18
|
divsmuld |
⊢ ( 𝜑 → ( ( ( 𝐴 ·s 𝐶 ) /su ( 𝐵 ·s 𝐷 ) ) = ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ↔ ( ( 𝐵 ·s 𝐷 ) ·s ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ) = ( 𝐴 ·s 𝐶 ) ) ) |
20 |
13 19
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) /su ( 𝐵 ·s 𝐷 ) ) = ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ) |
21 |
20
|
eqcomd |
⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) = ( ( 𝐴 ·s 𝐶 ) /su ( 𝐵 ·s 𝐷 ) ) ) |