Metamath Proof Explorer


Theorem divmuldivsd

Description: Multiplication of two surreal ratios. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Hypotheses divmuldivsd.1 ( 𝜑𝐴 No )
divmuldivsd.2 ( 𝜑𝐵 No )
divmuldivsd.3 ( 𝜑𝐶 No )
divmuldivsd.4 ( 𝜑𝐷 No )
divmuldivsd.5 ( 𝜑𝐵 ≠ 0s )
divmuldivsd.6 ( 𝜑𝐷 ≠ 0s )
Assertion divmuldivsd ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) = ( ( 𝐴 ·s 𝐶 ) /su ( 𝐵 ·s 𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 divmuldivsd.1 ( 𝜑𝐴 No )
2 divmuldivsd.2 ( 𝜑𝐵 No )
3 divmuldivsd.3 ( 𝜑𝐶 No )
4 divmuldivsd.4 ( 𝜑𝐷 No )
5 divmuldivsd.5 ( 𝜑𝐵 ≠ 0s )
6 divmuldivsd.6 ( 𝜑𝐷 ≠ 0s )
7 1 2 5 divscld ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No )
8 3 4 6 divscld ( 𝜑 → ( 𝐶 /su 𝐷 ) ∈ No )
9 2 4 7 8 muls4d ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) ·s ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ) = ( ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) ·s ( 𝐷 ·s ( 𝐶 /su 𝐷 ) ) ) )
10 1 2 5 divscan2d ( 𝜑 → ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) = 𝐴 )
11 3 4 6 divscan2d ( 𝜑 → ( 𝐷 ·s ( 𝐶 /su 𝐷 ) ) = 𝐶 )
12 10 11 oveq12d ( 𝜑 → ( ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) ·s ( 𝐷 ·s ( 𝐶 /su 𝐷 ) ) ) = ( 𝐴 ·s 𝐶 ) )
13 9 12 eqtrd ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) ·s ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ) = ( 𝐴 ·s 𝐶 ) )
14 1 3 mulscld ( 𝜑 → ( 𝐴 ·s 𝐶 ) ∈ No )
15 7 8 mulscld ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ∈ No )
16 2 4 mulscld ( 𝜑 → ( 𝐵 ·s 𝐷 ) ∈ No )
17 2 4 mulsne0bd ( 𝜑 → ( ( 𝐵 ·s 𝐷 ) ≠ 0s ↔ ( 𝐵 ≠ 0s𝐷 ≠ 0s ) ) )
18 5 6 17 mpbir2and ( 𝜑 → ( 𝐵 ·s 𝐷 ) ≠ 0s )
19 14 15 16 18 divsmuld ( 𝜑 → ( ( ( 𝐴 ·s 𝐶 ) /su ( 𝐵 ·s 𝐷 ) ) = ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ↔ ( ( 𝐵 ·s 𝐷 ) ·s ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) ) = ( 𝐴 ·s 𝐶 ) ) )
20 13 19 mpbird ( 𝜑 → ( ( 𝐴 ·s 𝐶 ) /su ( 𝐵 ·s 𝐷 ) ) = ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) )
21 20 eqcomd ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s ( 𝐶 /su 𝐷 ) ) = ( ( 𝐴 ·s 𝐶 ) /su ( 𝐵 ·s 𝐷 ) ) )