Metamath Proof Explorer


Theorem divmuli

Description: Relationship between division and multiplication. (Contributed by NM, 2-Feb-1995) (Revised by Mario Carneiro, 17-Feb-2014)

Ref Expression
Hypotheses divclz.1 𝐴 ∈ ℂ
divclz.2 𝐵 ∈ ℂ
divmulz.3 𝐶 ∈ ℂ
divmul.4 𝐵 ≠ 0
Assertion divmuli ( ( 𝐴 / 𝐵 ) = 𝐶 ↔ ( 𝐵 · 𝐶 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 divclz.1 𝐴 ∈ ℂ
2 divclz.2 𝐵 ∈ ℂ
3 divmulz.3 𝐶 ∈ ℂ
4 divmul.4 𝐵 ≠ 0
5 1 2 3 divmulzi ( 𝐵 ≠ 0 → ( ( 𝐴 / 𝐵 ) = 𝐶 ↔ ( 𝐵 · 𝐶 ) = 𝐴 ) )
6 4 5 ax-mp ( ( 𝐴 / 𝐵 ) = 𝐶 ↔ ( 𝐵 · 𝐶 ) = 𝐴 )