Metamath Proof Explorer


Theorem divne0

Description: The ratio of nonzero numbers is nonzero. (Contributed by NM, 28-Dec-2007)

Ref Expression
Assertion divne0 ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 divne0b ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 / 𝐵 ) ≠ 0 ) )
2 1 3expb ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 / 𝐵 ) ≠ 0 ) )
3 2 biimpa ( ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 / 𝐵 ) ≠ 0 )
4 3 an32s ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ≠ 0 )