Metamath Proof Explorer


Theorem divne0bd

Description: A ratio is zero iff the numerator is zero. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses div1d.1 ( 𝜑𝐴 ∈ ℂ )
divcld.2 ( 𝜑𝐵 ∈ ℂ )
divcld.3 ( 𝜑𝐵 ≠ 0 )
Assertion divne0bd ( 𝜑 → ( 𝐴 ≠ 0 ↔ ( 𝐴 / 𝐵 ) ≠ 0 ) )

Proof

Step Hyp Ref Expression
1 div1d.1 ( 𝜑𝐴 ∈ ℂ )
2 divcld.2 ( 𝜑𝐵 ∈ ℂ )
3 divcld.3 ( 𝜑𝐵 ≠ 0 )
4 divne0b ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 ≠ 0 ↔ ( 𝐴 / 𝐵 ) ≠ 0 ) )
5 1 2 3 4 syl3anc ( 𝜑 → ( 𝐴 ≠ 0 ↔ ( 𝐴 / 𝐵 ) ≠ 0 ) )