Metamath Proof Explorer
		
		
		
		Description:  If two complex numbers are unequal, their quotient is not one.
           Contrapositive of diveq1d .  (Contributed by David Moews, 28-Feb-2017)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | div1d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | divcld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
					
						|  |  | divcld.3 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
					
						|  |  | divne1d.4 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
				
					|  | Assertion | divne1d | ⊢  ( 𝜑  →  ( 𝐴  /  𝐵 )  ≠  1 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | div1d.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | divcld.2 | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | divcld.3 | ⊢ ( 𝜑  →  𝐵  ≠  0 ) | 
						
							| 4 |  | divne1d.4 | ⊢ ( 𝜑  →  𝐴  ≠  𝐵 ) | 
						
							| 5 | 1 2 3 | diveq1ad | ⊢ ( 𝜑  →  ( ( 𝐴  /  𝐵 )  =  1  ↔  𝐴  =  𝐵 ) ) | 
						
							| 6 | 5 | necon3bid | ⊢ ( 𝜑  →  ( ( 𝐴  /  𝐵 )  ≠  1  ↔  𝐴  ≠  𝐵 ) ) | 
						
							| 7 | 4 6 | mpbird | ⊢ ( 𝜑  →  ( 𝐴  /  𝐵 )  ≠  1 ) |