Step |
Hyp |
Ref |
Expression |
1 |
|
reccl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
2 |
|
mulneg1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 1 / 𝐵 ) ∈ ℂ ) → ( - 𝐴 · ( 1 / 𝐵 ) ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( - 𝐴 · ( 1 / 𝐵 ) ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
4 |
3
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 · ( 1 / 𝐵 ) ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
5 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
6 |
|
divrec |
⊢ ( ( - 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 / 𝐵 ) = ( - 𝐴 · ( 1 / 𝐵 ) ) ) |
7 |
5 6
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - 𝐴 / 𝐵 ) = ( - 𝐴 · ( 1 / 𝐵 ) ) ) |
8 |
|
divrec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
9 |
8
|
negeqd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐴 / 𝐵 ) = - ( 𝐴 · ( 1 / 𝐵 ) ) ) |
10 |
4 7 9
|
3eqtr4rd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐴 / 𝐵 ) = ( - 𝐴 / 𝐵 ) ) |