Step |
Hyp |
Ref |
Expression |
1 |
|
divneg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐴 / 𝐵 ) = ( - 𝐴 / 𝐵 ) ) |
2 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
3 |
|
div2neg |
⊢ ( ( - 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - - 𝐴 / - 𝐵 ) = ( - 𝐴 / 𝐵 ) ) |
4 |
2 3
|
syl3an1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - - 𝐴 / - 𝐵 ) = ( - 𝐴 / 𝐵 ) ) |
5 |
|
negneg |
⊢ ( 𝐴 ∈ ℂ → - - 𝐴 = 𝐴 ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - - 𝐴 = 𝐴 ) |
7 |
6
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( - - 𝐴 / - 𝐵 ) = ( 𝐴 / - 𝐵 ) ) |
8 |
1 4 7
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → - ( 𝐴 / 𝐵 ) = ( 𝐴 / - 𝐵 ) ) |