Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
2 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
3 |
2
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
4 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
5 |
4
|
neneqd |
⊢ ( 𝐵 ∈ ℕ → ¬ 𝐵 = 0 ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ¬ 𝐵 = 0 ) |
7 |
6
|
intnand |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
8 |
|
gcdn0cl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
9 |
1 3 7 8
|
syl21anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
10 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
11 |
2 10
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
12 |
|
gcddiv |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) ∧ ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
13 |
1 3 9 11 12
|
syl31anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
14 |
9
|
nncnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
15 |
9
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
16 |
14 15
|
dividd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
17 |
13 16
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
18 |
|
zcn |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℂ ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
20 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
21 |
20
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
22 |
4
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ≠ 0 ) |
23 |
|
divcan7 |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) / ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = ( 𝐴 / 𝐵 ) ) |
24 |
23
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℂ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) / ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
25 |
19 21 22 14 15 24
|
syl122anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) / ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
26 |
|
znq |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
27 |
11
|
simpld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
28 |
|
gcdcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
29 |
28
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
30 |
2 29
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
31 |
|
dvdsval2 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
32 |
30 15 1 31
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
33 |
27 32
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
34 |
11
|
simprd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
35 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ ) |
36 |
|
nndivdvds |
⊢ ( ( 𝐵 ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) ) |
37 |
35 9 36
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) ) |
38 |
34 37
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
39 |
|
qnumdenbi |
⊢ ( ( ( 𝐴 / 𝐵 ) ∈ ℚ ∧ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) → ( ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ∧ ( 𝐴 / 𝐵 ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) / ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ↔ ( ( numer ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
40 |
26 33 38 39
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ∧ ( 𝐴 / 𝐵 ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) / ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ↔ ( ( numer ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
41 |
17 25 40
|
mpbi2and |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( ( numer ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∧ ( denom ‘ ( 𝐴 / 𝐵 ) ) = ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |