Step |
Hyp |
Ref |
Expression |
1 |
|
abscl |
⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
2 |
|
rerpdivcl |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 𝑥 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) / 𝑥 ) ∈ ℝ ) |
3 |
1 2
|
sylan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ( ( abs ‘ 𝐴 ) / 𝑥 ) ∈ ℝ ) |
4 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 𝐴 ∈ ℂ ) |
5 |
|
rpcn |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℂ ) |
6 |
5
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 𝑛 ∈ ℂ ) |
7 |
|
rpne0 |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ≠ 0 ) |
8 |
7
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 𝑛 ≠ 0 ) |
9 |
4 6 8
|
absdivd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( abs ‘ ( 𝐴 / 𝑛 ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝑛 ) ) ) |
10 |
|
rpre |
⊢ ( 𝑛 ∈ ℝ+ → 𝑛 ∈ ℝ ) |
11 |
10
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 𝑛 ∈ ℝ ) |
12 |
|
rpge0 |
⊢ ( 𝑛 ∈ ℝ+ → 0 ≤ 𝑛 ) |
13 |
12
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 0 ≤ 𝑛 ) |
14 |
11 13
|
absidd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
15 |
14
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ 𝐴 ) / 𝑛 ) ) |
16 |
9 15
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( abs ‘ ( 𝐴 / 𝑛 ) ) = ( ( abs ‘ 𝐴 ) / 𝑛 ) ) |
17 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) |
18 |
4
|
abscld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
19 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
20 |
19
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 𝑥 ∈ ℝ ) |
21 |
|
rpgt0 |
⊢ ( 𝑥 ∈ ℝ+ → 0 < 𝑥 ) |
22 |
21
|
ad2antlr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 0 < 𝑥 ) |
23 |
|
rpgt0 |
⊢ ( 𝑛 ∈ ℝ+ → 0 < 𝑛 ) |
24 |
23
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → 0 < 𝑛 ) |
25 |
|
ltdiv23 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 𝑛 ∈ ℝ ∧ 0 < 𝑛 ) ) → ( ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ↔ ( ( abs ‘ 𝐴 ) / 𝑛 ) < 𝑥 ) ) |
26 |
18 20 22 11 24 25
|
syl122anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ↔ ( ( abs ‘ 𝐴 ) / 𝑛 ) < 𝑥 ) ) |
27 |
17 26
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( ( abs ‘ 𝐴 ) / 𝑛 ) < 𝑥 ) |
28 |
16 27
|
eqbrtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑛 ∈ ℝ+ ∧ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) |
29 |
28
|
expr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑛 ∈ ℝ+ ) → ( ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) |
30 |
29
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∀ 𝑛 ∈ ℝ+ ( ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) |
31 |
|
breq1 |
⊢ ( 𝑦 = ( ( abs ‘ 𝐴 ) / 𝑥 ) → ( 𝑦 < 𝑛 ↔ ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 ) ) |
32 |
31
|
rspceaimv |
⊢ ( ( ( ( abs ‘ 𝐴 ) / 𝑥 ) ∈ ℝ ∧ ∀ 𝑛 ∈ ℝ+ ( ( ( abs ‘ 𝐴 ) / 𝑥 ) < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) |
33 |
3 30 32
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) |
34 |
33
|
ralrimiva |
⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) |
35 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
36 |
5
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ∈ ℂ ) |
37 |
7
|
adantl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+ ) → 𝑛 ≠ 0 ) |
38 |
35 36 37
|
divcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑛 ∈ ℝ+ ) → ( 𝐴 / 𝑛 ) ∈ ℂ ) |
39 |
38
|
ralrimiva |
⊢ ( 𝐴 ∈ ℂ → ∀ 𝑛 ∈ ℝ+ ( 𝐴 / 𝑛 ) ∈ ℂ ) |
40 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
41 |
40
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ℝ+ ⊆ ℝ ) |
42 |
39 41
|
rlim0lt |
⊢ ( 𝐴 ∈ ℂ → ( ( 𝑛 ∈ ℝ+ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℝ ∀ 𝑛 ∈ ℝ+ ( 𝑦 < 𝑛 → ( abs ‘ ( 𝐴 / 𝑛 ) ) < 𝑥 ) ) ) |
43 |
34 42
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( 𝑛 ∈ ℝ+ ↦ ( 𝐴 / 𝑛 ) ) ⇝𝑟 0 ) |