| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → 𝐴 ∈ ℂ ) |
| 3 |
|
reccl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
| 4 |
3
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℂ ) |
| 5 |
1 2 4
|
mul12d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝐴 · ( 1 / 𝐵 ) ) ) = ( 𝐴 · ( 𝐵 · ( 1 / 𝐵 ) ) ) ) |
| 6 |
|
recid |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 1 / 𝐵 ) ) = 1 ) |
| 7 |
6
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 1 / 𝐵 ) ) = 1 ) |
| 8 |
7
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · ( 𝐵 · ( 1 / 𝐵 ) ) ) = ( 𝐴 · 1 ) ) |
| 9 |
2
|
mulridd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 10 |
5 8 9
|
3eqtrd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 · ( 𝐴 · ( 1 / 𝐵 ) ) ) = 𝐴 ) |
| 11 |
2 4
|
mulcld |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ℂ ) |
| 12 |
|
3simpc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 13 |
|
divmul |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ↔ ( 𝐵 · ( 𝐴 · ( 1 / 𝐵 ) ) ) = 𝐴 ) ) |
| 14 |
2 11 12 13
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ↔ ( 𝐵 · ( 𝐴 · ( 1 / 𝐵 ) ) ) = 𝐴 ) ) |
| 15 |
10 14
|
mpbird |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |