Metamath Proof Explorer
Description: Relationship between division and reciprocal. Theorem I.9 of Apostol
p. 18. (Contributed by NM, 11-Oct-1999)
|
|
Ref |
Expression |
|
Hypotheses |
divclz.1 |
⊢ 𝐴 ∈ ℂ |
|
|
divclz.2 |
⊢ 𝐵 ∈ ℂ |
|
Assertion |
divreczi |
⊢ ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
divclz.1 |
⊢ 𝐴 ∈ ℂ |
2 |
|
divclz.2 |
⊢ 𝐵 ∈ ℂ |
3 |
|
divrec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
4 |
1 2 3
|
mp3an12 |
⊢ ( 𝐵 ≠ 0 → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |