Step |
Hyp |
Ref |
Expression |
1 |
|
isdivrng1.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
isdivrng1.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
isdivrng1.3 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
4 |
|
isdivrng1.4 |
⊢ 𝑋 = ran 𝐺 |
5 |
1 2 3 4
|
isdrngo1 |
⊢ ( 𝑅 ∈ DivRingOps ↔ ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ) |
6 |
|
ovres |
⊢ ( ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) = ( 𝐴 𝐻 𝐵 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) = ( 𝐴 𝐻 𝐵 ) ) |
8 |
|
eqid |
⊢ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) |
9 |
8
|
grpocl |
⊢ ( ( ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ∧ 𝐴 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∧ 𝐵 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
10 |
9
|
3expib |
⊢ ( ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp → ( ( 𝐴 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∧ 𝐵 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) ) |
11 |
10
|
adantl |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( ( 𝐴 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∧ 𝐵 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) ) |
12 |
|
grporndm |
⊢ ( ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp → ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = dom dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = dom dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
14 |
|
difss |
⊢ ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 |
15 |
|
xpss12 |
⊢ ( ( ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 ∧ ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 ) → ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ⊆ ( 𝑋 × 𝑋 ) ) |
16 |
14 14 15
|
mp2an |
⊢ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ⊆ ( 𝑋 × 𝑋 ) |
17 |
1 2 4
|
rngosm |
⊢ ( 𝑅 ∈ RingOps → 𝐻 : ( 𝑋 × 𝑋 ) ⟶ 𝑋 ) |
18 |
17
|
fdmd |
⊢ ( 𝑅 ∈ RingOps → dom 𝐻 = ( 𝑋 × 𝑋 ) ) |
19 |
16 18
|
sseqtrrid |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ⊆ dom 𝐻 ) |
20 |
|
ssdmres |
⊢ ( ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ⊆ dom 𝐻 ↔ dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) |
21 |
19 20
|
sylib |
⊢ ( 𝑅 ∈ RingOps → dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) |
23 |
22
|
dmeqd |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → dom dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = dom ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) |
24 |
|
dmxpid |
⊢ dom ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) = ( 𝑋 ∖ { 𝑍 } ) |
25 |
23 24
|
eqtrdi |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → dom dom ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( 𝑋 ∖ { 𝑍 } ) ) |
26 |
13 25
|
eqtrd |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) = ( 𝑋 ∖ { 𝑍 } ) ) |
27 |
26
|
eleq2d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( 𝐴 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ↔ 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
28 |
26
|
eleq2d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( 𝐵 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ↔ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
29 |
27 28
|
anbi12d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( ( 𝐴 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∧ 𝐵 ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ) ↔ ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
30 |
26
|
eleq2d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ran ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ↔ ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
31 |
11 29 30
|
3imtr3d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) → ( ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
32 |
31
|
imp |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) → ( 𝐴 ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) |
33 |
7 32
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ∧ ( 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) → ( 𝐴 𝐻 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) |
34 |
33
|
3impb |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝐻 ↾ ( ( 𝑋 ∖ { 𝑍 } ) × ( 𝑋 ∖ { 𝑍 } ) ) ) ∈ GrpOp ) ∧ 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐴 𝐻 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) |
35 |
5 34
|
syl3an1b |
⊢ ( ( 𝑅 ∈ DivRingOps ∧ 𝐴 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ 𝐵 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐴 𝐻 𝐵 ) ∈ ( 𝑋 ∖ { 𝑍 } ) ) |