Metamath Proof Explorer
Description: An associative law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
divsassd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
divsassd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
divsassd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
|
|
divsassd.4 |
⊢ ( 𝜑 → 𝐶 ≠ 0s ) |
|
Assertion |
divsassd |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) = ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
divsassd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
divsassd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
divsassd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
divsassd.4 |
⊢ ( 𝜑 → 𝐶 ≠ 0s ) |
5 |
3 4
|
recsexd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) |
6 |
1 2 3 4 5
|
divsasswd |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) = ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) |