Metamath Proof Explorer


Theorem divsassd

Description: An associative law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divsassd.1 ( 𝜑𝐴 No )
divsassd.2 ( 𝜑𝐵 No )
divsassd.3 ( 𝜑𝐶 No )
divsassd.4 ( 𝜑𝐶 ≠ 0s )
Assertion divsassd ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) = ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) )

Proof

Step Hyp Ref Expression
1 divsassd.1 ( 𝜑𝐴 No )
2 divsassd.2 ( 𝜑𝐵 No )
3 divsassd.3 ( 𝜑𝐶 No )
4 divsassd.4 ( 𝜑𝐶 ≠ 0s )
5 3 4 recsexd ( 𝜑 → ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s )
6 1 2 3 4 5 divsasswd ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) = ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) )