Step |
Hyp |
Ref |
Expression |
1 |
|
divsasswd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
divsasswd.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
divsasswd.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
divsasswd.4 |
⊢ ( 𝜑 → 𝐶 ≠ 0s ) |
5 |
|
divsasswd.5 |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) |
6 |
2 3 4 5
|
divscan2wd |
⊢ ( 𝜑 → ( 𝐶 ·s ( 𝐵 /su 𝐶 ) ) = 𝐵 ) |
7 |
6
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐶 ·s ( 𝐵 /su 𝐶 ) ) ) = ( 𝐴 ·s 𝐵 ) ) |
8 |
2 3 4 5
|
divsclwd |
⊢ ( 𝜑 → ( 𝐵 /su 𝐶 ) ∈ No ) |
9 |
3 1 8
|
muls12d |
⊢ ( 𝜑 → ( 𝐶 ·s ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) = ( 𝐴 ·s ( 𝐶 ·s ( 𝐵 /su 𝐶 ) ) ) ) |
10 |
1 2
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s 𝐵 ) ∈ No ) |
11 |
10 3 4 5
|
divscan2wd |
⊢ ( 𝜑 → ( 𝐶 ·s ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) ) = ( 𝐴 ·s 𝐵 ) ) |
12 |
7 9 11
|
3eqtr4rd |
⊢ ( 𝜑 → ( 𝐶 ·s ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) ) = ( 𝐶 ·s ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) ) |
13 |
10 3 4 5
|
divsclwd |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) ∈ No ) |
14 |
1 8
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ∈ No ) |
15 |
13 14 3 4
|
mulscan1d |
⊢ ( 𝜑 → ( ( 𝐶 ·s ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) ) = ( 𝐶 ·s ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) ↔ ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) = ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) ) |
16 |
12 15
|
mpbid |
⊢ ( 𝜑 → ( ( 𝐴 ·s 𝐵 ) /su 𝐶 ) = ( 𝐴 ·s ( 𝐵 /su 𝐶 ) ) ) |