Metamath Proof Explorer


Theorem divscan1d

Description: A cancellation law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divscan2d.1 ( 𝜑𝐴 No )
divscan2d.2 ( 𝜑𝐵 No )
divscan2d.3 ( 𝜑𝐵 ≠ 0s )
Assertion divscan1d ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s 𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 divscan2d.1 ( 𝜑𝐴 No )
2 divscan2d.2 ( 𝜑𝐵 No )
3 divscan2d.3 ( 𝜑𝐵 ≠ 0s )
4 2 3 recsexd ( 𝜑 → ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s )
5 1 2 3 4 divscan1wd ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s 𝐵 ) = 𝐴 )