Metamath Proof Explorer
Description: A cancellation law for surreal division. (Contributed by Scott Fenton, 16-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
divscan2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
divscan2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
divscan2d.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0s ) |
|
Assertion |
divscan1d |
⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s 𝐵 ) = 𝐴 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
divscan2d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
divscan2d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
divscan2d.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0s ) |
4 |
2 3
|
recsexd |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) |
5 |
1 2 3 4
|
divscan1wd |
⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s 𝐵 ) = 𝐴 ) |