Metamath Proof Explorer


Theorem divscan1wd

Description: A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses divscan2wd.1 ( 𝜑𝐴 No )
divscan2wd.2 ( 𝜑𝐵 No )
divscan2wd.3 ( 𝜑𝐵 ≠ 0s )
divscan2wd.4 ( 𝜑 → ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s )
Assertion divscan1wd ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s 𝐵 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 divscan2wd.1 ( 𝜑𝐴 No )
2 divscan2wd.2 ( 𝜑𝐵 No )
3 divscan2wd.3 ( 𝜑𝐵 ≠ 0s )
4 divscan2wd.4 ( 𝜑 → ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s )
5 1 2 3 4 divsclwd ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No )
6 5 2 mulscomd ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s 𝐵 ) = ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) )
7 1 2 3 4 divscan2wd ( 𝜑 → ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) = 𝐴 )
8 6 7 eqtrd ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s 𝐵 ) = 𝐴 )