Description: A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divscan2wd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
divscan2wd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
divscan2wd.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | ||
divscan2wd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) | ||
Assertion | divscan2wd | ⊢ ( 𝜑 → ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) = 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divscan2wd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | divscan2wd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | divscan2wd.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | |
4 | divscan2wd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) | |
5 | eqid | ⊢ ( 𝐴 /su 𝐵 ) = ( 𝐴 /su 𝐵 ) | |
6 | 1 2 3 4 | divsclwd | ⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No ) |
7 | 1 6 2 3 4 | divsmulwd | ⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) = ( 𝐴 /su 𝐵 ) ↔ ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) = 𝐴 ) ) |
8 | 5 7 | mpbii | ⊢ ( 𝜑 → ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) = 𝐴 ) |