Metamath Proof Explorer


Theorem divscan2wd

Description: A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025)

Ref Expression
Hypotheses divscan2wd.1 ( 𝜑𝐴 No )
divscan2wd.2 ( 𝜑𝐵 No )
divscan2wd.3 ( 𝜑𝐵 ≠ 0s )
divscan2wd.4 ( 𝜑 → ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s )
Assertion divscan2wd ( 𝜑 → ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 divscan2wd.1 ( 𝜑𝐴 No )
2 divscan2wd.2 ( 𝜑𝐵 No )
3 divscan2wd.3 ( 𝜑𝐵 ≠ 0s )
4 divscan2wd.4 ( 𝜑 → ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s )
5 eqid ( 𝐴 /su 𝐵 ) = ( 𝐴 /su 𝐵 )
6 1 2 3 4 divsclwd ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No )
7 1 6 2 3 4 divsmulwd ( 𝜑 → ( ( 𝐴 /su 𝐵 ) = ( 𝐴 /su 𝐵 ) ↔ ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) = 𝐴 ) )
8 5 7 mpbii ( 𝜑 → ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) = 𝐴 )