Description: Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | divscl | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → ( 𝐴 /su 𝐵 ) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recsex | ⊢ ( ( 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) | |
2 | 1 | 3adant1 | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) |
3 | divsclw | ⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) ∧ ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) → ( 𝐴 /su 𝐵 ) ∈ No ) | |
4 | 2 3 | mpdan | ⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → ( 𝐴 /su 𝐵 ) ∈ No ) |