Metamath Proof Explorer


Theorem divscl

Description: Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Assertion divscl ( ( 𝐴 No 𝐵 No 𝐵 ≠ 0s ) → ( 𝐴 /su 𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 recsex ( ( 𝐵 No 𝐵 ≠ 0s ) → ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s )
2 1 3adant1 ( ( 𝐴 No 𝐵 No 𝐵 ≠ 0s ) → ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s )
3 divsclw ( ( ( 𝐴 No 𝐵 No 𝐵 ≠ 0s ) ∧ ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s ) → ( 𝐴 /su 𝐵 ) ∈ No )
4 2 3 mpdan ( ( 𝐴 No 𝐵 No 𝐵 ≠ 0s ) → ( 𝐴 /su 𝐵 ) ∈ No )