Metamath Proof Explorer
Description: Surreal division closure law. (Contributed by Scott Fenton, 16-Mar-2025)
|
|
Ref |
Expression |
|
Hypotheses |
divscld.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
|
|
divscld.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
|
|
divscld.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0s ) |
|
Assertion |
divscld |
⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
divscld.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
divscld.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
divscld.3 |
⊢ ( 𝜑 → 𝐵 ≠ 0s ) |
4 |
|
divscl |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) → ( 𝐴 /su 𝐵 ) ∈ No ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No ) |