Metamath Proof Explorer


Theorem divsclwd

Description: Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Hypotheses divsclwd.1 ( 𝜑𝐴 No )
divsclwd.2 ( 𝜑𝐵 No )
divsclwd.3 ( 𝜑𝐵 ≠ 0s )
divsclwd.4 ( 𝜑 → ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s )
Assertion divsclwd ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No )

Proof

Step Hyp Ref Expression
1 divsclwd.1 ( 𝜑𝐴 No )
2 divsclwd.2 ( 𝜑𝐵 No )
3 divsclwd.3 ( 𝜑𝐵 ≠ 0s )
4 divsclwd.4 ( 𝜑 → ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s )
5 divsclw ( ( ( 𝐴 No 𝐵 No 𝐵 ≠ 0s ) ∧ ∃ 𝑥 No ( 𝐵 ·s 𝑥 ) = 1s ) → ( 𝐴 /su 𝐵 ) ∈ No )
6 1 2 3 4 5 syl31anc ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No )