Description: Weak division closure law. (Contributed by Scott Fenton, 12-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | divsclwd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
divsclwd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
divsclwd.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | ||
divsclwd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) | ||
Assertion | divsclwd | ⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divsclwd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
2 | divsclwd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
3 | divsclwd.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | |
4 | divsclwd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) | |
5 | divsclw | ⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ 𝐵 ≠ 0s ) ∧ ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) → ( 𝐴 /su 𝐵 ) ∈ No ) | |
6 | 1 2 3 4 5 | syl31anc | ⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No ) |