Step |
Hyp |
Ref |
Expression |
1 |
|
ercpbl.r |
⊢ ( 𝜑 → ∼ Er 𝑉 ) |
2 |
|
ercpbl.v |
⊢ ( 𝜑 → 𝑉 ∈ 𝑊 ) |
3 |
|
ercpbl.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) |
4 |
1
|
ecss |
⊢ ( 𝜑 → [ 𝐴 ] ∼ ⊆ 𝑉 ) |
5 |
2 4
|
ssexd |
⊢ ( 𝜑 → [ 𝐴 ] ∼ ∈ V ) |
6 |
|
eceq1 |
⊢ ( 𝑥 = 𝐴 → [ 𝑥 ] ∼ = [ 𝐴 ] ∼ ) |
7 |
6 3
|
fvmptg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ [ 𝐴 ] ∼ ∈ V ) → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |
8 |
5 7
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |
9 |
8
|
expcom |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) ) |
10 |
3
|
dmeqi |
⊢ dom 𝐹 = dom ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) |
11 |
1
|
ecss |
⊢ ( 𝜑 → [ 𝑥 ] ∼ ⊆ 𝑉 ) |
12 |
2 11
|
ssexd |
⊢ ( 𝜑 → [ 𝑥 ] ∼ ∈ V ) |
13 |
12
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 [ 𝑥 ] ∼ ∈ V ) |
14 |
|
dmmptg |
⊢ ( ∀ 𝑥 ∈ 𝑉 [ 𝑥 ] ∼ ∈ V → dom ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) = 𝑉 ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → dom ( 𝑥 ∈ 𝑉 ↦ [ 𝑥 ] ∼ ) = 𝑉 ) |
16 |
10 15
|
eqtrid |
⊢ ( 𝜑 → dom 𝐹 = 𝑉 ) |
17 |
16
|
eleq2d |
⊢ ( 𝜑 → ( 𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ 𝑉 ) ) |
18 |
17
|
notbid |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ dom 𝐹 ↔ ¬ 𝐴 ∈ 𝑉 ) ) |
19 |
|
ndmfv |
⊢ ( ¬ 𝐴 ∈ dom 𝐹 → ( 𝐹 ‘ 𝐴 ) = ∅ ) |
20 |
18 19
|
syl6bir |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = ∅ ) ) |
21 |
|
ecdmn0 |
⊢ ( 𝐴 ∈ dom ∼ ↔ [ 𝐴 ] ∼ ≠ ∅ ) |
22 |
|
erdm |
⊢ ( ∼ Er 𝑉 → dom ∼ = 𝑉 ) |
23 |
1 22
|
syl |
⊢ ( 𝜑 → dom ∼ = 𝑉 ) |
24 |
23
|
eleq2d |
⊢ ( 𝜑 → ( 𝐴 ∈ dom ∼ ↔ 𝐴 ∈ 𝑉 ) ) |
25 |
24
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 ∈ dom ∼ → 𝐴 ∈ 𝑉 ) ) |
26 |
21 25
|
syl5bir |
⊢ ( 𝜑 → ( [ 𝐴 ] ∼ ≠ ∅ → 𝐴 ∈ 𝑉 ) ) |
27 |
26
|
necon1bd |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝑉 → [ 𝐴 ] ∼ = ∅ ) ) |
28 |
20 27
|
jcad |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝑉 → ( ( 𝐹 ‘ 𝐴 ) = ∅ ∧ [ 𝐴 ] ∼ = ∅ ) ) ) |
29 |
|
eqtr3 |
⊢ ( ( ( 𝐹 ‘ 𝐴 ) = ∅ ∧ [ 𝐴 ] ∼ = ∅ ) → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |
30 |
28 29
|
syl6 |
⊢ ( 𝜑 → ( ¬ 𝐴 ∈ 𝑉 → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) ) |
31 |
9 30
|
pm2.61d |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) = [ 𝐴 ] ∼ ) |