Metamath Proof Explorer


Theorem divsmo

Description: Uniqueness of surreal inversion. Given a non-zero surreal A , there is at most one surreal giving a particular product. (Contributed by Scott Fenton, 10-Mar-2025)

Ref Expression
Assertion divsmo ( ( 𝐴 No 𝐴 ≠ 0s ) → ∃* 𝑥 No ( 𝐴 ·s 𝑥 ) = 𝐵 )

Proof

Step Hyp Ref Expression
1 eqtr3 ( ( ( 𝐴 ·s 𝑥 ) = 𝐵 ∧ ( 𝐴 ·s 𝑦 ) = 𝐵 ) → ( 𝐴 ·s 𝑥 ) = ( 𝐴 ·s 𝑦 ) )
2 simprl ( ( ( 𝐴 No 𝐴 ≠ 0s ) ∧ ( 𝑥 No 𝑦 No ) ) → 𝑥 No )
3 simprr ( ( ( 𝐴 No 𝐴 ≠ 0s ) ∧ ( 𝑥 No 𝑦 No ) ) → 𝑦 No )
4 simpll ( ( ( 𝐴 No 𝐴 ≠ 0s ) ∧ ( 𝑥 No 𝑦 No ) ) → 𝐴 No )
5 simplr ( ( ( 𝐴 No 𝐴 ≠ 0s ) ∧ ( 𝑥 No 𝑦 No ) ) → 𝐴 ≠ 0s )
6 2 3 4 5 mulscan1d ( ( ( 𝐴 No 𝐴 ≠ 0s ) ∧ ( 𝑥 No 𝑦 No ) ) → ( ( 𝐴 ·s 𝑥 ) = ( 𝐴 ·s 𝑦 ) ↔ 𝑥 = 𝑦 ) )
7 1 6 imbitrid ( ( ( 𝐴 No 𝐴 ≠ 0s ) ∧ ( 𝑥 No 𝑦 No ) ) → ( ( ( 𝐴 ·s 𝑥 ) = 𝐵 ∧ ( 𝐴 ·s 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) )
8 7 ralrimivva ( ( 𝐴 No 𝐴 ≠ 0s ) → ∀ 𝑥 No 𝑦 No ( ( ( 𝐴 ·s 𝑥 ) = 𝐵 ∧ ( 𝐴 ·s 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) )
9 oveq2 ( 𝑥 = 𝑦 → ( 𝐴 ·s 𝑥 ) = ( 𝐴 ·s 𝑦 ) )
10 9 eqeq1d ( 𝑥 = 𝑦 → ( ( 𝐴 ·s 𝑥 ) = 𝐵 ↔ ( 𝐴 ·s 𝑦 ) = 𝐵 ) )
11 10 rmo4 ( ∃* 𝑥 No ( 𝐴 ·s 𝑥 ) = 𝐵 ↔ ∀ 𝑥 No 𝑦 No ( ( ( 𝐴 ·s 𝑥 ) = 𝐵 ∧ ( 𝐴 ·s 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) )
12 8 11 sylibr ( ( 𝐴 No 𝐴 ≠ 0s ) → ∃* 𝑥 No ( 𝐴 ·s 𝑥 ) = 𝐵 )