Step |
Hyp |
Ref |
Expression |
1 |
|
eqtr3 |
⊢ ( ( ( 𝐴 ·s 𝑥 ) = 𝐵 ∧ ( 𝐴 ·s 𝑦 ) = 𝐵 ) → ( 𝐴 ·s 𝑥 ) = ( 𝐴 ·s 𝑦 ) ) |
2 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ) → 𝑥 ∈ No ) |
3 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ) → 𝑦 ∈ No ) |
4 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ) → 𝐴 ∈ No ) |
5 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ) → 𝐴 ≠ 0s ) |
6 |
2 3 4 5
|
mulscan1d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ) → ( ( 𝐴 ·s 𝑥 ) = ( 𝐴 ·s 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
7 |
1 6
|
imbitrid |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) ∧ ( 𝑥 ∈ No ∧ 𝑦 ∈ No ) ) → ( ( ( 𝐴 ·s 𝑥 ) = 𝐵 ∧ ( 𝐴 ·s 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
8 |
7
|
ralrimivva |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( 𝐴 ·s 𝑥 ) = 𝐵 ∧ ( 𝐴 ·s 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ·s 𝑥 ) = ( 𝐴 ·s 𝑦 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 ·s 𝑥 ) = 𝐵 ↔ ( 𝐴 ·s 𝑦 ) = 𝐵 ) ) |
11 |
10
|
rmo4 |
⊢ ( ∃* 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 𝐵 ↔ ∀ 𝑥 ∈ No ∀ 𝑦 ∈ No ( ( ( 𝐴 ·s 𝑥 ) = 𝐵 ∧ ( 𝐴 ·s 𝑦 ) = 𝐵 ) → 𝑥 = 𝑦 ) ) |
12 |
8 11
|
sylibr |
⊢ ( ( 𝐴 ∈ No ∧ 𝐴 ≠ 0s ) → ∃* 𝑥 ∈ No ( 𝐴 ·s 𝑥 ) = 𝐵 ) |