Metamath Proof Explorer


Theorem divsmuld

Description: Relationship between surreal division and multiplication. (Contributed by Scott Fenton, 16-Mar-2025)

Ref Expression
Hypotheses divsmuld.1 ( 𝜑𝐴 No )
divsmuld.2 ( 𝜑𝐵 No )
divsmuld.3 ( 𝜑𝐶 No )
divsmuld.4 ( 𝜑𝐶 ≠ 0s )
Assertion divsmuld ( 𝜑 → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝐶 ·s 𝐵 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 divsmuld.1 ( 𝜑𝐴 No )
2 divsmuld.2 ( 𝜑𝐵 No )
3 divsmuld.3 ( 𝜑𝐶 No )
4 divsmuld.4 ( 𝜑𝐶 ≠ 0s )
5 3 4 recsexd ( 𝜑 → ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s )
6 1 2 3 4 5 divsmulwd ( 𝜑 → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝐶 ·s 𝐵 ) = 𝐴 ) )