Step |
Hyp |
Ref |
Expression |
1 |
|
divsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → ( 𝐴 /su 𝐶 ) = ( ℩ 𝑦 ∈ No ( 𝐶 ·s 𝑦 ) = 𝐴 ) ) |
2 |
1
|
eqeq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( ℩ 𝑦 ∈ No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) ) |
3 |
2
|
3expb |
⊢ ( ( 𝐴 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( ℩ 𝑦 ∈ No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) ) |
4 |
3
|
3adant2 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( ℩ 𝑦 ∈ No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) ) |
5 |
4
|
adantr |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( ℩ 𝑦 ∈ No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) → 𝐵 ∈ No ) |
7 |
|
simp3l |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) → 𝐶 ∈ No ) |
8 |
|
simp3r |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) → 𝐶 ≠ 0s ) |
9 |
|
simp1 |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) → 𝐴 ∈ No ) |
10 |
7 8 9
|
3jca |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) → ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No ) ) |
11 |
|
noreceuw |
⊢ ( ( ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ∧ 𝐴 ∈ No ) ∧ ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) → ∃! 𝑦 ∈ No ( 𝐶 ·s 𝑦 ) = 𝐴 ) |
12 |
10 11
|
sylan |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) → ∃! 𝑦 ∈ No ( 𝐶 ·s 𝑦 ) = 𝐴 ) |
13 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐶 ·s 𝑦 ) = ( 𝐶 ·s 𝐵 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐶 ·s 𝑦 ) = 𝐴 ↔ ( 𝐶 ·s 𝐵 ) = 𝐴 ) ) |
15 |
14
|
riota2 |
⊢ ( ( 𝐵 ∈ No ∧ ∃! 𝑦 ∈ No ( 𝐶 ·s 𝑦 ) = 𝐴 ) → ( ( 𝐶 ·s 𝐵 ) = 𝐴 ↔ ( ℩ 𝑦 ∈ No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) ) |
16 |
6 12 15
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) → ( ( 𝐶 ·s 𝐵 ) = 𝐴 ↔ ( ℩ 𝑦 ∈ No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) ) |
17 |
5 16
|
bitr4d |
⊢ ( ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ∧ ( 𝐶 ∈ No ∧ 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 ∈ No ( 𝐶 ·s 𝑥 ) = 1s ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝐶 ·s 𝐵 ) = 𝐴 ) ) |