Metamath Proof Explorer


Theorem divsmulw

Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. Later, when we prove precsex , we can eliminate the existence hypothesis (see divsmul ). (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion divsmulw ( ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝐶 ·s 𝐵 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 divsval ( ( 𝐴 No 𝐶 No 𝐶 ≠ 0s ) → ( 𝐴 /su 𝐶 ) = ( 𝑦 No ( 𝐶 ·s 𝑦 ) = 𝐴 ) )
2 1 eqeq1d ( ( 𝐴 No 𝐶 No 𝐶 ≠ 0s ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝑦 No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) )
3 2 3expb ( ( 𝐴 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝑦 No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) )
4 3 3adant2 ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝑦 No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) )
5 4 adantr ( ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝑦 No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) )
6 simpl2 ( ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s ) → 𝐵 No )
7 simp3l ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) → 𝐶 No )
8 simp3r ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) → 𝐶 ≠ 0s )
9 simp1 ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) → 𝐴 No )
10 7 8 9 3jca ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) → ( 𝐶 No 𝐶 ≠ 0s𝐴 No ) )
11 noreceuw ( ( ( 𝐶 No 𝐶 ≠ 0s𝐴 No ) ∧ ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s ) → ∃! 𝑦 No ( 𝐶 ·s 𝑦 ) = 𝐴 )
12 10 11 sylan ( ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s ) → ∃! 𝑦 No ( 𝐶 ·s 𝑦 ) = 𝐴 )
13 oveq2 ( 𝑦 = 𝐵 → ( 𝐶 ·s 𝑦 ) = ( 𝐶 ·s 𝐵 ) )
14 13 eqeq1d ( 𝑦 = 𝐵 → ( ( 𝐶 ·s 𝑦 ) = 𝐴 ↔ ( 𝐶 ·s 𝐵 ) = 𝐴 ) )
15 14 riota2 ( ( 𝐵 No ∧ ∃! 𝑦 No ( 𝐶 ·s 𝑦 ) = 𝐴 ) → ( ( 𝐶 ·s 𝐵 ) = 𝐴 ↔ ( 𝑦 No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) )
16 6 12 15 syl2anc ( ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s ) → ( ( 𝐶 ·s 𝐵 ) = 𝐴 ↔ ( 𝑦 No ( 𝐶 ·s 𝑦 ) = 𝐴 ) = 𝐵 ) )
17 5 16 bitr4d ( ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝐶 ·s 𝐵 ) = 𝐴 ) )