Metamath Proof Explorer


Theorem divsmulwd

Description: Relationship between surreal division and multiplication. Weak version that does not assume reciprocals. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Hypotheses divsmulwd.1 ( 𝜑𝐴 No )
divsmulwd.2 ( 𝜑𝐵 No )
divsmulwd.3 ( 𝜑𝐶 No )
divsmulwd.4 ( 𝜑𝐶 ≠ 0s )
divsmulwd.5 ( 𝜑 → ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s )
Assertion divsmulwd ( 𝜑 → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝐶 ·s 𝐵 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 divsmulwd.1 ( 𝜑𝐴 No )
2 divsmulwd.2 ( 𝜑𝐵 No )
3 divsmulwd.3 ( 𝜑𝐶 No )
4 divsmulwd.4 ( 𝜑𝐶 ≠ 0s )
5 divsmulwd.5 ( 𝜑 → ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s )
6 3 4 jca ( 𝜑 → ( 𝐶 No 𝐶 ≠ 0s ) )
7 divsmulw ( ( ( 𝐴 No 𝐵 No ∧ ( 𝐶 No 𝐶 ≠ 0s ) ) ∧ ∃ 𝑥 No ( 𝐶 ·s 𝑥 ) = 1s ) → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝐶 ·s 𝐵 ) = 𝐴 ) )
8 1 2 6 5 7 syl31anc ( 𝜑 → ( ( 𝐴 /su 𝐶 ) = 𝐵 ↔ ( 𝐶 ·s 𝐵 ) = 𝐴 ) )