Metamath Proof Explorer


Theorem divsqrtsum2

Description: A bound on the distance of the sum sum_ n <_ x ( 1 / sqrt n ) from its asymptotic value 2 sqrt x + L . (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Hypotheses divsqrtsum.2 𝐹 = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / ( √ ‘ 𝑛 ) ) − ( 2 · ( √ ‘ 𝑥 ) ) ) )
divsqrsum2.1 ( 𝜑𝐹𝑟 𝐿 )
Assertion divsqrtsum2 ( ( 𝜑𝐴 ∈ ℝ+ ) → ( abs ‘ ( ( 𝐹𝐴 ) − 𝐿 ) ) ≤ ( 1 / ( √ ‘ 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 divsqrtsum.2 𝐹 = ( 𝑥 ∈ ℝ+ ↦ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 1 / ( √ ‘ 𝑛 ) ) − ( 2 · ( √ ‘ 𝑥 ) ) ) )
2 divsqrsum2.1 ( 𝜑𝐹𝑟 𝐿 )
3 1 divsqrtsumlem ( 𝐹 : ℝ+ ⟶ ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ( ( 𝐹𝑟 𝐿𝐴 ∈ ℝ+ ) → ( abs ‘ ( ( 𝐹𝐴 ) − 𝐿 ) ) ≤ ( 1 / ( √ ‘ 𝐴 ) ) ) )
4 3 simp3i ( ( 𝐹𝑟 𝐿𝐴 ∈ ℝ+ ) → ( abs ‘ ( ( 𝐹𝐴 ) − 𝐿 ) ) ≤ ( 1 / ( √ ‘ 𝐴 ) ) )
5 2 4 sylan ( ( 𝜑𝐴 ∈ ℝ+ ) → ( abs ‘ ( ( 𝐹𝐴 ) − 𝐿 ) ) ≤ ( 1 / ( √ ‘ 𝐴 ) ) )