Step |
Hyp |
Ref |
Expression |
1 |
|
negcl |
⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) |
2 |
|
divdir |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) ) |
3 |
1 2
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) ) |
4 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
5 |
4
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 − 𝐵 ) / 𝐶 ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 − 𝐵 ) / 𝐶 ) ) |
7 |
3 6
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) / 𝐶 ) ) |
8 |
|
divneg |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → - ( 𝐵 / 𝐶 ) = ( - 𝐵 / 𝐶 ) ) |
9 |
8
|
3expb |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → - ( 𝐵 / 𝐶 ) = ( - 𝐵 / 𝐶 ) ) |
10 |
9
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → - ( 𝐵 / 𝐶 ) = ( - 𝐵 / 𝐶 ) ) |
11 |
10
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + - ( 𝐵 / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) ) |
12 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
13 |
12
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
14 |
13
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
15 |
|
divcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
16 |
15
|
3expb |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
17 |
16
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
18 |
14 17
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + - ( 𝐵 / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |
19 |
11 18
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |
20 |
7 19
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 − 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |