| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negcl |
⊢ ( 𝐵 ∈ ℂ → - 𝐵 ∈ ℂ ) |
| 2 |
|
divdir |
⊢ ( ( 𝐴 ∈ ℂ ∧ - 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) ) |
| 3 |
1 2
|
syl3an2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) ) |
| 4 |
|
negsub |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + - 𝐵 ) = ( 𝐴 − 𝐵 ) ) |
| 5 |
4
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 − 𝐵 ) / 𝐶 ) ) |
| 6 |
5
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 + - 𝐵 ) / 𝐶 ) = ( ( 𝐴 − 𝐵 ) / 𝐶 ) ) |
| 7 |
3 6
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) = ( ( 𝐴 − 𝐵 ) / 𝐶 ) ) |
| 8 |
|
divneg |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → - ( 𝐵 / 𝐶 ) = ( - 𝐵 / 𝐶 ) ) |
| 9 |
8
|
3expb |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → - ( 𝐵 / 𝐶 ) = ( - 𝐵 / 𝐶 ) ) |
| 10 |
9
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → - ( 𝐵 / 𝐶 ) = ( - 𝐵 / 𝐶 ) ) |
| 11 |
10
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + - ( 𝐵 / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) ) |
| 12 |
|
divcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
| 13 |
12
|
3expb |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
| 14 |
13
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐴 / 𝐶 ) ∈ ℂ ) |
| 15 |
|
divcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 16 |
15
|
3expb |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 17 |
16
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( 𝐵 / 𝐶 ) ∈ ℂ ) |
| 18 |
14 17
|
negsubd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + - ( 𝐵 / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |
| 19 |
11 18
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 / 𝐶 ) + ( - 𝐵 / 𝐶 ) ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |
| 20 |
7 19
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) → ( ( 𝐴 − 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) − ( 𝐵 / 𝐶 ) ) ) |