Metamath Proof Explorer


Theorem divsval

Description: The value of surreal division. (Contributed by Scott Fenton, 12-Mar-2025)

Ref Expression
Assertion divsval ( ( 𝐴 No 𝐵 No 𝐵 ≠ 0s ) → ( 𝐴 /su 𝐵 ) = ( 𝑥 No ( 𝐵 ·s 𝑥 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 eldifsn ( 𝐵 ∈ ( No ∖ { 0s } ) ↔ ( 𝐵 No 𝐵 ≠ 0s ) )
2 eqeq2 ( 𝑦 = 𝐴 → ( ( 𝑧 ·s 𝑥 ) = 𝑦 ↔ ( 𝑧 ·s 𝑥 ) = 𝐴 ) )
3 2 riotabidv ( 𝑦 = 𝐴 → ( 𝑥 No ( 𝑧 ·s 𝑥 ) = 𝑦 ) = ( 𝑥 No ( 𝑧 ·s 𝑥 ) = 𝐴 ) )
4 oveq1 ( 𝑧 = 𝐵 → ( 𝑧 ·s 𝑥 ) = ( 𝐵 ·s 𝑥 ) )
5 4 eqeq1d ( 𝑧 = 𝐵 → ( ( 𝑧 ·s 𝑥 ) = 𝐴 ↔ ( 𝐵 ·s 𝑥 ) = 𝐴 ) )
6 5 riotabidv ( 𝑧 = 𝐵 → ( 𝑥 No ( 𝑧 ·s 𝑥 ) = 𝐴 ) = ( 𝑥 No ( 𝐵 ·s 𝑥 ) = 𝐴 ) )
7 df-divs /su = ( 𝑦 No , 𝑧 ∈ ( No ∖ { 0s } ) ↦ ( 𝑥 No ( 𝑧 ·s 𝑥 ) = 𝑦 ) )
8 riotaex ( 𝑥 No ( 𝐵 ·s 𝑥 ) = 𝐴 ) ∈ V
9 3 6 7 8 ovmpo ( ( 𝐴 No 𝐵 ∈ ( No ∖ { 0s } ) ) → ( 𝐴 /su 𝐵 ) = ( 𝑥 No ( 𝐵 ·s 𝑥 ) = 𝐴 ) )
10 1 9 sylan2br ( ( 𝐴 No ∧ ( 𝐵 No 𝐵 ≠ 0s ) ) → ( 𝐴 /su 𝐵 ) = ( 𝑥 No ( 𝐵 ·s 𝑥 ) = 𝐴 ) )
11 10 3impb ( ( 𝐴 No 𝐵 No 𝐵 ≠ 0s ) → ( 𝐴 /su 𝐵 ) = ( 𝑥 No ( 𝐵 ·s 𝑥 ) = 𝐴 ) )