Step |
Hyp |
Ref |
Expression |
1 |
|
eldifsn |
⊢ ( 𝐵 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
2 |
|
eqeq2 |
⊢ ( 𝑧 = 𝐴 → ( ( 𝑦 · 𝑥 ) = 𝑧 ↔ ( 𝑦 · 𝑥 ) = 𝐴 ) ) |
3 |
2
|
riotabidv |
⊢ ( 𝑧 = 𝐴 → ( ℩ 𝑥 ∈ ℂ ( 𝑦 · 𝑥 ) = 𝑧 ) = ( ℩ 𝑥 ∈ ℂ ( 𝑦 · 𝑥 ) = 𝐴 ) ) |
4 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 · 𝑥 ) = ( 𝐵 · 𝑥 ) ) |
5 |
4
|
eqeq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 · 𝑥 ) = 𝐴 ↔ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
6 |
5
|
riotabidv |
⊢ ( 𝑦 = 𝐵 → ( ℩ 𝑥 ∈ ℂ ( 𝑦 · 𝑥 ) = 𝐴 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
7 |
|
df-div |
⊢ / = ( 𝑧 ∈ ℂ , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℩ 𝑥 ∈ ℂ ( 𝑦 · 𝑥 ) = 𝑧 ) ) |
8 |
|
riotaex |
⊢ ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ∈ V |
9 |
3 6 7 8
|
ovmpo |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ( ℂ ∖ { 0 } ) ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
10 |
1 9
|
sylan2br |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |
11 |
10
|
3impb |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( ℩ 𝑥 ∈ ℂ ( 𝐵 · 𝑥 ) = 𝐴 ) ) |