| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djaj.k |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 2 |
|
djaj.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 3 |
|
djaj.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
| 4 |
|
djaj.j |
⊢ 𝐽 = ( ( vA ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 6 |
5
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → 𝐾 ∈ Lat ) |
| 7 |
|
hlop |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OP ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → 𝐾 ∈ OP ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 10 |
9 2 3
|
diadmclN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 11 |
10
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → 𝑋 ∈ ( Base ‘ 𝐾 ) ) |
| 12 |
|
eqid |
⊢ ( oc ‘ 𝐾 ) = ( oc ‘ 𝐾 ) |
| 13 |
9 12
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
| 14 |
8 11 13
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ) |
| 15 |
9 2
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 16 |
15
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → 𝑊 ∈ ( Base ‘ 𝐾 ) ) |
| 17 |
9 12
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 18 |
8 16 17
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 19 |
9 1
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 20 |
6 14 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 21 |
|
eqid |
⊢ ( meet ‘ 𝐾 ) = ( meet ‘ 𝐾 ) |
| 22 |
9 21
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 23 |
6 20 16 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 24 |
9 2 3
|
diadmclN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ dom 𝐼 ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 25 |
24
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → 𝑌 ∈ ( Base ‘ 𝐾 ) ) |
| 26 |
9 12
|
opoccl |
⊢ ( ( 𝐾 ∈ OP ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 27 |
8 25 26
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 28 |
9 1
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 29 |
6 27 18 28
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 30 |
9 21
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 31 |
6 29 16 30
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) |
| 32 |
9 21
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 33 |
6 23 31 32
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ) |
| 34 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
| 35 |
9 34 21
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( le ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
| 36 |
6 23 31 35
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( le ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
| 37 |
9 34 21
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) |
| 38 |
6 29 16 37
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) |
| 39 |
9 34 6 33 31 16 36 38
|
lattrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( le ‘ 𝐾 ) 𝑊 ) |
| 40 |
9 34 2 3
|
diaeldm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ dom 𝐼 ↔ ( ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( le ‘ 𝐾 ) 𝑊 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ dom 𝐼 ↔ ( ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ( le ‘ 𝐾 ) 𝑊 ) ) ) |
| 42 |
33 39 41
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ dom 𝐼 ) |
| 43 |
|
eqid |
⊢ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
| 44 |
|
eqid |
⊢ ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) |
| 45 |
1 21 12 2 43 3 44
|
diaocN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
| 46 |
42 45
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
| 47 |
|
hloml |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OML ) |
| 48 |
47
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → 𝐾 ∈ OML ) |
| 49 |
9 1
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ∨ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 50 |
6 11 25 49
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝑋 ∨ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ) |
| 51 |
34 2 3
|
diadmleN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → 𝑋 ( le ‘ 𝐾 ) 𝑊 ) |
| 52 |
51
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → 𝑋 ( le ‘ 𝐾 ) 𝑊 ) |
| 53 |
34 2 3
|
diadmleN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ dom 𝐼 ) → 𝑌 ( le ‘ 𝐾 ) 𝑊 ) |
| 54 |
53
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → 𝑌 ( le ‘ 𝐾 ) 𝑊 ) |
| 55 |
9 34 1
|
latjle12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑌 ( le ‘ 𝐾 ) 𝑊 ) ↔ ( 𝑋 ∨ 𝑌 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
| 56 |
6 11 25 16 55
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( 𝑋 ( le ‘ 𝐾 ) 𝑊 ∧ 𝑌 ( le ‘ 𝐾 ) 𝑊 ) ↔ ( 𝑋 ∨ 𝑌 ) ( le ‘ 𝐾 ) 𝑊 ) ) |
| 57 |
52 54 56
|
mpbi2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝑋 ∨ 𝑌 ) ( le ‘ 𝐾 ) 𝑊 ) |
| 58 |
9 34 1 21 12
|
omlspjN |
⊢ ( ( 𝐾 ∈ OML ∧ ( ( 𝑋 ∨ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ∧ ( 𝑋 ∨ 𝑌 ) ( le ‘ 𝐾 ) 𝑊 ) → ( ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( 𝑋 ∨ 𝑌 ) ) |
| 59 |
48 50 16 57 58
|
syl121anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( 𝑋 ∨ 𝑌 ) ) |
| 60 |
9 1
|
latjidm |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 61 |
6 18 60
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 62 |
61
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 63 |
9 1
|
latjass |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( 𝑋 ∨ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 64 |
6 50 18 18 63
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 65 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 66 |
65
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → 𝐾 ∈ OL ) |
| 67 |
9 1 21 12
|
oldmm2 |
⊢ ( ( 𝐾 ∈ OL ∧ ( 𝑋 ∨ 𝑌 ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 68 |
66 50 16 67
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 69 |
9 1 21 12
|
oldmj1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 70 |
66 11 25 69
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) ) |
| 71 |
9 34 21
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑊 ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) = 𝑋 ) ) |
| 72 |
6 11 16 71
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑊 ↔ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) = 𝑋 ) ) |
| 73 |
52 72
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) = 𝑋 ) |
| 74 |
73
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ) |
| 75 |
9 1 21 12
|
oldmm1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑋 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 76 |
66 11 16 75
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 77 |
74 76
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 78 |
9 34 21
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑌 ( le ‘ 𝐾 ) 𝑊 ↔ ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 ) = 𝑌 ) ) |
| 79 |
6 25 16 78
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝑌 ( le ‘ 𝐾 ) 𝑊 ↔ ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 ) = 𝑌 ) ) |
| 80 |
54 79
|
mpbid |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 ) = 𝑌 ) |
| 81 |
80
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) |
| 82 |
9 1 21 12
|
oldmm1 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑌 ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 83 |
66 25 16 82
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑌 ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 84 |
81 83
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) = ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 85 |
77 84
|
oveq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ( meet ‘ 𝐾 ) ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 86 |
70 85
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) |
| 87 |
86
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
| 88 |
9 21
|
latmmdir |
⊢ ( ( 𝐾 ∈ OL ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
| 89 |
66 20 29 16 88
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
| 90 |
87 89
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
| 91 |
90
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( oc ‘ 𝐾 ) ‘ ( ( ( oc ‘ 𝐾 ) ‘ ( 𝑋 ∨ 𝑌 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
| 92 |
68 91
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
| 93 |
92
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 94 |
64 93
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) = ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 95 |
62 94
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) = ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 96 |
95
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( 𝑋 ∨ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) = ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
| 97 |
59 96
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝑋 ∨ 𝑌 ) = ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) |
| 98 |
97
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) |
| 99 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 100 |
2 3
|
diaclN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 101 |
100
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 102 |
2 43 3
|
diaelrnN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 103 |
101 102
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 104 |
2 3
|
diaclN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ dom 𝐼 ) → ( 𝐼 ‘ 𝑌 ) ∈ ran 𝐼 ) |
| 105 |
104
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ 𝑌 ) ∈ ran 𝐼 ) |
| 106 |
2 43 3
|
diaelrnN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐼 ‘ 𝑌 ) ∈ ran 𝐼 ) → ( 𝐼 ‘ 𝑌 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 107 |
105 106
|
syldan |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ 𝑌 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 108 |
2 43 3 44 4
|
djavalN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐼 ‘ 𝑋 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ∧ ( 𝐼 ‘ 𝑌 ) ⊆ ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) ) → ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
| 109 |
99 103 107 108
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
| 110 |
9 34 21
|
latmle2 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ∈ ( Base ‘ 𝐾 ) ∧ 𝑊 ∈ ( Base ‘ 𝐾 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) |
| 111 |
6 20 16 110
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) |
| 112 |
9 34 2 3
|
diaeldm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ dom 𝐼 ↔ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) |
| 113 |
112
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ dom 𝐼 ↔ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) |
| 114 |
23 111 113
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ dom 𝐼 ) |
| 115 |
9 34 2 3
|
diaeldm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ dom 𝐼 ↔ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) |
| 116 |
115
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ dom 𝐼 ↔ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ ( Base ‘ 𝐾 ) ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( le ‘ 𝐾 ) 𝑊 ) ) ) |
| 117 |
31 38 116
|
mpbir2and |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ dom 𝐼 ) |
| 118 |
21 2 3
|
diameetN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ dom 𝐼 ∧ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ∈ dom 𝐼 ) ) → ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∩ ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
| 119 |
99 114 117 118
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∩ ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) |
| 120 |
1 21 12 2 43 3 44
|
diaocN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ dom 𝐼 ) → ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ) |
| 121 |
120
|
adantrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ) |
| 122 |
1 21 12 2 43 3 44
|
diaocN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ dom 𝐼 ) → ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) |
| 123 |
122
|
adantrl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) |
| 124 |
121 123
|
ineq12d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ∩ ( 𝐼 ‘ ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) |
| 125 |
119 124
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) = ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) |
| 126 |
125
|
fveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑋 ) ) ∩ ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
| 127 |
109 126
|
eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) = ( ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) ‘ ( 𝐼 ‘ ( ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑋 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ( meet ‘ 𝐾 ) ( ( ( ( oc ‘ 𝐾 ) ‘ 𝑌 ) ∨ ( ( oc ‘ 𝐾 ) ‘ 𝑊 ) ) ( meet ‘ 𝐾 ) 𝑊 ) ) ) ) ) |
| 128 |
46 98 127
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ dom 𝐼 ∧ 𝑌 ∈ dom 𝐼 ) ) → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |