| Step |
Hyp |
Ref |
Expression |
| 1 |
|
djhlj.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
djhlj.k |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
djhlj.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 4 |
|
djhlj.i |
⊢ 𝐼 = ( ( DIsoH ‘ 𝐾 ) ‘ 𝑊 ) |
| 5 |
|
djhlj.j |
⊢ 𝐽 = ( ( joinH ‘ 𝐾 ) ‘ 𝑊 ) |
| 6 |
|
djhljj.w |
⊢ ( 𝜑 → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
| 7 |
|
djhljj.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
djhljj.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 9 |
1 2 3 4 5
|
djhlj |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |
| 10 |
6 7 8 9
|
syl12anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |
| 11 |
1 3 4
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 12 |
6 7 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) |
| 13 |
|
eqid |
⊢ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) = ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) |
| 14 |
|
eqid |
⊢ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) = ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) |
| 15 |
3 13 4 14
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐼 ‘ 𝑋 ) ∈ ran 𝐼 ) → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 16 |
6 12 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 17 |
1 3 4
|
dihcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝐼 ‘ 𝑌 ) ∈ ran 𝐼 ) |
| 18 |
6 8 17
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑌 ) ∈ ran 𝐼 ) |
| 19 |
3 13 4 14
|
dihrnss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝐼 ‘ 𝑌 ) ∈ ran 𝐼 ) → ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 20 |
6 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) |
| 21 |
3 4 13 14 5
|
djhcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐼 ‘ 𝑋 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ∧ ( 𝐼 ‘ 𝑌 ) ⊆ ( Base ‘ ( ( DVecH ‘ 𝐾 ) ‘ 𝑊 ) ) ) ) → ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ∈ ran 𝐼 ) |
| 22 |
6 16 20 21
|
syl12anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ∈ ran 𝐼 ) |
| 23 |
3 4
|
dihcnvid2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) = ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |
| 24 |
6 22 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) = ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) |
| 25 |
10 24
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
| 26 |
6
|
simpld |
⊢ ( 𝜑 → 𝐾 ∈ HL ) |
| 27 |
26
|
hllatd |
⊢ ( 𝜑 → 𝐾 ∈ Lat ) |
| 28 |
1 2
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 29 |
27 7 8 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ) |
| 30 |
1 3 4
|
dihcnvcl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ∈ ran 𝐼 ) → ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ∈ 𝐵 ) |
| 31 |
6 22 30
|
syl2anc |
⊢ ( 𝜑 → ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ∈ 𝐵 ) |
| 32 |
1 3 4
|
dih11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∨ 𝑌 ) ∈ 𝐵 ∧ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ∈ 𝐵 ) → ( ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) ↔ ( 𝑋 ∨ 𝑌 ) = ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
| 33 |
6 29 31 32
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐼 ‘ ( 𝑋 ∨ 𝑌 ) ) = ( 𝐼 ‘ ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) ↔ ( 𝑋 ∨ 𝑌 ) = ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) ) |
| 34 |
25 33
|
mpbid |
⊢ ( 𝜑 → ( 𝑋 ∨ 𝑌 ) = ( ◡ 𝐼 ‘ ( ( 𝐼 ‘ 𝑋 ) 𝐽 ( 𝐼 ‘ 𝑌 ) ) ) ) |