Metamath Proof Explorer


Theorem dju0en

Description: Cardinal addition with cardinal zero (the empty set). Part (a1) of proof of Theorem 6J of Enderton p. 143. (Contributed by NM, 27-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion dju0en ( 𝐴𝑉 → ( 𝐴 ⊔ ∅ ) ≈ 𝐴 )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 in0 ( 𝐴 ∩ ∅ ) = ∅
3 endjudisj ( ( 𝐴𝑉 ∧ ∅ ∈ V ∧ ( 𝐴 ∩ ∅ ) = ∅ ) → ( 𝐴 ⊔ ∅ ) ≈ ( 𝐴 ∪ ∅ ) )
4 1 2 3 mp3an23 ( 𝐴𝑉 → ( 𝐴 ⊔ ∅ ) ≈ ( 𝐴 ∪ ∅ ) )
5 un0 ( 𝐴 ∪ ∅ ) = 𝐴
6 4 5 breqtrdi ( 𝐴𝑉 → ( 𝐴 ⊔ ∅ ) ≈ 𝐴 )