Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → 𝐴 ∈ 𝑉 ) |
2 |
|
1oex |
⊢ 1o ∈ V |
3 |
|
djuex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 1o ∈ V ) → ( 𝐴 ⊔ 1o ) ∈ V ) |
4 |
1 2 3
|
sylancl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( 𝐴 ⊔ 1o ) ∈ V ) |
5 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) |
6 |
|
df1o2 |
⊢ 1o = { ∅ } |
7 |
6
|
xpeq2i |
⊢ ( { 1o } × 1o ) = ( { 1o } × { ∅ } ) |
8 |
|
0ex |
⊢ ∅ ∈ V |
9 |
2 8
|
xpsn |
⊢ ( { 1o } × { ∅ } ) = { 〈 1o , ∅ 〉 } |
10 |
7 9
|
eqtri |
⊢ ( { 1o } × 1o ) = { 〈 1o , ∅ 〉 } |
11 |
|
ssun2 |
⊢ ( { 1o } × 1o ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
12 |
10 11
|
eqsstrri |
⊢ { 〈 1o , ∅ 〉 } ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
13 |
|
opex |
⊢ 〈 1o , ∅ 〉 ∈ V |
14 |
13
|
snss |
⊢ ( 〈 1o , ∅ 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ↔ { 〈 1o , ∅ 〉 } ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ) |
15 |
12 14
|
mpbir |
⊢ 〈 1o , ∅ 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
16 |
|
df-dju |
⊢ ( 𝐴 ⊔ 1o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
17 |
15 16
|
eleqtrri |
⊢ 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) |
18 |
17
|
a1i |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) ) |
19 |
|
difsnen |
⊢ ( ( ( 𝐴 ⊔ 1o ) ∈ V ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ∧ 〈 1o , ∅ 〉 ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ) |
20 |
4 5 18 19
|
syl3anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ) |
21 |
16
|
difeq1i |
⊢ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) = ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ { 〈 1o , ∅ 〉 } ) |
22 |
|
xp01disjl |
⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 1o ) ) = ∅ |
23 |
|
disj3 |
⊢ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 1o ) ) = ∅ ↔ ( { ∅ } × 𝐴 ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) ) |
24 |
22 23
|
mpbi |
⊢ ( { ∅ } × 𝐴 ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) |
25 |
|
difun2 |
⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ ( { 1o } × 1o ) ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) |
26 |
10
|
difeq2i |
⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ ( { 1o } × 1o ) ) = ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ { 〈 1o , ∅ 〉 } ) |
27 |
24 25 26
|
3eqtr2i |
⊢ ( { ∅ } × 𝐴 ) = ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ { 〈 1o , ∅ 〉 } ) |
28 |
21 27
|
eqtr4i |
⊢ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) = ( { ∅ } × 𝐴 ) |
29 |
|
xpsnen2g |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
30 |
8 1 29
|
sylancr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
31 |
28 30
|
eqbrtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ≈ 𝐴 ) |
32 |
|
entr |
⊢ ( ( ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ∧ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ≈ 𝐴 ) → ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ 𝐴 ) |
33 |
20 31 32
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { 𝐵 } ) ≈ 𝐴 ) |