| Step | Hyp | Ref | Expression | 
						
							| 1 |  | enrefg | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ≈  𝐴 ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  𝐴 )  →  𝐴  ≈  𝐴 ) | 
						
							| 3 |  | ensn1g | ⊢ ( 𝐴  ∈  𝑉  →  { 𝐴 }  ≈  1o ) | 
						
							| 4 | 3 | ensymd | ⊢ ( 𝐴  ∈  𝑉  →  1o  ≈  { 𝐴 } ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  𝐴 )  →  1o  ≈  { 𝐴 } ) | 
						
							| 6 |  | simpr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  𝐴 )  →  ¬  𝐴  ∈  𝐴 ) | 
						
							| 7 |  | disjsn | ⊢ ( ( 𝐴  ∩  { 𝐴 } )  =  ∅  ↔  ¬  𝐴  ∈  𝐴 ) | 
						
							| 8 | 6 7 | sylibr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  𝐴 )  →  ( 𝐴  ∩  { 𝐴 } )  =  ∅ ) | 
						
							| 9 |  | djuenun | ⊢ ( ( 𝐴  ≈  𝐴  ∧  1o  ≈  { 𝐴 }  ∧  ( 𝐴  ∩  { 𝐴 } )  =  ∅ )  →  ( 𝐴  ⊔  1o )  ≈  ( 𝐴  ∪  { 𝐴 } ) ) | 
						
							| 10 | 2 5 8 9 | syl3anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  𝐴 )  →  ( 𝐴  ⊔  1o )  ≈  ( 𝐴  ∪  { 𝐴 } ) ) | 
						
							| 11 |  | df-suc | ⊢ suc  𝐴  =  ( 𝐴  ∪  { 𝐴 } ) | 
						
							| 12 | 10 11 | breqtrrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ¬  𝐴  ∈  𝐴 )  →  ( 𝐴  ⊔  1o )  ≈  suc  𝐴 ) |