| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 2 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐴  ∈  𝑉 ) | 
						
							| 3 |  | xpsnen2g | ⊢ ( ( ∅  ∈  V  ∧  𝐴  ∈  𝑉 )  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 4 | 1 2 3 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { ∅ }  ×  𝐴 )  ≈  𝐴 ) | 
						
							| 5 | 4 | ensymd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐴  ≈  ( { ∅ }  ×  𝐴 ) ) | 
						
							| 6 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 7 |  | snex | ⊢ { ∅ }  ∈  V | 
						
							| 8 |  | simp2 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐵  ∈  𝑊 ) | 
						
							| 9 |  | xpexg | ⊢ ( ( { ∅ }  ∈  V  ∧  𝐵  ∈  𝑊 )  →  ( { ∅ }  ×  𝐵 )  ∈  V ) | 
						
							| 10 | 7 8 9 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { ∅ }  ×  𝐵 )  ∈  V ) | 
						
							| 11 |  | xpsnen2g | ⊢ ( ( 1o  ∈  V  ∧  ( { ∅ }  ×  𝐵 )  ∈  V )  →  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ≈  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 12 | 6 10 11 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ≈  ( { ∅ }  ×  𝐵 ) ) | 
						
							| 13 |  | xpsnen2g | ⊢ ( ( ∅  ∈  V  ∧  𝐵  ∈  𝑊 )  →  ( { ∅ }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 14 | 1 8 13 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { ∅ }  ×  𝐵 )  ≈  𝐵 ) | 
						
							| 15 |  | entr | ⊢ ( ( ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ≈  ( { ∅ }  ×  𝐵 )  ∧  ( { ∅ }  ×  𝐵 )  ≈  𝐵 )  →  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ≈  𝐵 ) | 
						
							| 16 | 12 14 15 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ≈  𝐵 ) | 
						
							| 17 | 16 | ensymd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐵  ≈  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) ) | 
						
							| 18 |  | xp01disjl | ⊢ ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  =  ∅ | 
						
							| 19 | 18 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  =  ∅ ) | 
						
							| 20 |  | djuenun | ⊢ ( ( 𝐴  ≈  ( { ∅ }  ×  𝐴 )  ∧  𝐵  ≈  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ∧  ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  =  ∅ )  →  ( 𝐴  ⊔  𝐵 )  ≈  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) ) ) | 
						
							| 21 | 5 17 19 20 | syl3anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ⊔  𝐵 )  ≈  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) ) ) | 
						
							| 22 |  | snex | ⊢ { 1o }  ∈  V | 
						
							| 23 |  | simp3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐶  ∈  𝑋 ) | 
						
							| 24 |  | xpexg | ⊢ ( ( { 1o }  ∈  V  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  𝐶 )  ∈  V ) | 
						
							| 25 | 22 23 24 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  𝐶 )  ∈  V ) | 
						
							| 26 |  | xpsnen2g | ⊢ ( ( 1o  ∈  V  ∧  ( { 1o }  ×  𝐶 )  ∈  V )  →  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) )  ≈  ( { 1o }  ×  𝐶 ) ) | 
						
							| 27 | 6 25 26 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) )  ≈  ( { 1o }  ×  𝐶 ) ) | 
						
							| 28 |  | xpsnen2g | ⊢ ( ( 1o  ∈  V  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  𝐶 )  ≈  𝐶 ) | 
						
							| 29 | 6 23 28 | sylancr | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  𝐶 )  ≈  𝐶 ) | 
						
							| 30 |  | entr | ⊢ ( ( ( { 1o }  ×  ( { 1o }  ×  𝐶 ) )  ≈  ( { 1o }  ×  𝐶 )  ∧  ( { 1o }  ×  𝐶 )  ≈  𝐶 )  →  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) )  ≈  𝐶 ) | 
						
							| 31 | 27 29 30 | syl2anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) )  ≈  𝐶 ) | 
						
							| 32 | 31 | ensymd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  𝐶  ≈  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 33 |  | indir | ⊢ ( ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) )  =  ( ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) )  ∪  ( ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) ) | 
						
							| 34 |  | xp01disjl | ⊢ ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) )  =  ∅ | 
						
							| 35 |  | xp01disjl | ⊢ ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) )  =  ∅ | 
						
							| 36 | 35 | xpeq2i | ⊢ ( { 1o }  ×  ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) ) )  =  ( { 1o }  ×  ∅ ) | 
						
							| 37 |  | xpindi | ⊢ ( { 1o }  ×  ( ( { ∅ }  ×  𝐵 )  ∩  ( { 1o }  ×  𝐶 ) ) )  =  ( ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 38 |  | xp0 | ⊢ ( { 1o }  ×  ∅ )  =  ∅ | 
						
							| 39 | 36 37 38 | 3eqtr3i | ⊢ ( ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) )  =  ∅ | 
						
							| 40 | 34 39 | uneq12i | ⊢ ( ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) )  ∪  ( ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) )  =  ( ∅  ∪  ∅ ) | 
						
							| 41 |  | un0 | ⊢ ( ∅  ∪  ∅ )  =  ∅ | 
						
							| 42 | 40 41 | eqtri | ⊢ ( ( ( { ∅ }  ×  𝐴 )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) )  ∪  ( ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) )  =  ∅ | 
						
							| 43 | 33 42 | eqtri | ⊢ ( ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) )  =  ∅ | 
						
							| 44 | 43 | a1i | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) )  =  ∅ ) | 
						
							| 45 |  | djuenun | ⊢ ( ( ( 𝐴  ⊔  𝐵 )  ≈  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  ∧  𝐶  ≈  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) )  ∧  ( ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  ∩  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) )  =  ∅ )  →  ( ( 𝐴  ⊔  𝐵 )  ⊔  𝐶 )  ≈  ( ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  ∪  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) ) | 
						
							| 46 | 21 32 44 45 | syl3anc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐴  ⊔  𝐵 )  ⊔  𝐶 )  ≈  ( ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  ∪  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) ) | 
						
							| 47 |  | df-dju | ⊢ ( 𝐵  ⊔  𝐶 )  =  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) | 
						
							| 48 | 47 | xpeq2i | ⊢ ( { 1o }  ×  ( 𝐵  ⊔  𝐶 ) )  =  ( { 1o }  ×  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 49 |  | xpundi | ⊢ ( { 1o }  ×  ( ( { ∅ }  ×  𝐵 )  ∪  ( { 1o }  ×  𝐶 ) ) )  =  ( ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ∪  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 50 | 48 49 | eqtri | ⊢ ( { 1o }  ×  ( 𝐵  ⊔  𝐶 ) )  =  ( ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ∪  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 51 | 50 | uneq2i | ⊢ ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( 𝐵  ⊔  𝐶 ) ) )  =  ( ( { ∅ }  ×  𝐴 )  ∪  ( ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ∪  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) ) | 
						
							| 52 |  | df-dju | ⊢ ( 𝐴  ⊔  ( 𝐵  ⊔  𝐶 ) )  =  ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( 𝐵  ⊔  𝐶 ) ) ) | 
						
							| 53 |  | unass | ⊢ ( ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  ∪  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) )  =  ( ( { ∅ }  ×  𝐴 )  ∪  ( ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) )  ∪  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) ) | 
						
							| 54 | 51 52 53 | 3eqtr4i | ⊢ ( 𝐴  ⊔  ( 𝐵  ⊔  𝐶 ) )  =  ( ( ( { ∅ }  ×  𝐴 )  ∪  ( { 1o }  ×  ( { ∅ }  ×  𝐵 ) ) )  ∪  ( { 1o }  ×  ( { 1o }  ×  𝐶 ) ) ) | 
						
							| 55 | 46 54 | breqtrrdi | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑊  ∧  𝐶  ∈  𝑋 )  →  ( ( 𝐴  ⊔  𝐵 )  ⊔  𝐶 )  ≈  ( 𝐴  ⊔  ( 𝐵  ⊔  𝐶 ) ) ) |